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5. Graphing and Optimization
5-1 First Derivative and Graphs

Learning Objectives
Use the first derivative to determine when functions are increasing or decreasing.

Use the first derivative test to determine the local extrema of functions.
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5. Graphing and Optimization
5-1 First Derivative and Graphs

Correspondence between behavior of f ′(x) at x = c and behavior of graph of
f(x) at that x = c

f ′ is positive at x = c⇐⇒ The line tangent to graph of f at x = c exists and it tilts
upward.

f ′ is negative at x = c⇐⇒ The line tangent to graph of f at x = c exists and it tilts
downward.

f ′ is zero at x = c⇐⇒ The line tangent to graph of f at x = c exists and it is
horizontal.
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5. Graphing and Optimization
5-1 First Derivative and Graphs

Now talk about behavior on an interval, not just at some particular x = c.

DEFINITION
Words: f is increasing on the interval a < x < b

Meaning: If a < x1 < x2 < b then f(x1) < f(x2)

Graphical interpretation: If you move from left to right across the interval, the
y−values go up

DEFINITION
Words: f is decreasing on the interval a < x < b

Meaning: If a < x1 < x2 < b then f(x1) > f(x2)

Graphical interpretation: If you move from left to right across the interval, the
y−values go down
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5. Graphing and Optimization
5-1 First Derivative and Graphs

Correspondence between behavior of f ′ on an interval and behavior of f on
that interval

f ′ is positive on interval a < x < b⇐⇒ f is increasing on interval a < x < b.

f ′ is negative on interval a < x < b⇐⇒ f is decreasing on interval a < x < b.

f ′ is zero on whole interval a < x < b⇐⇒ f is constant on the whole interval
a < x < b.
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5. Graphing and Optimization
5-1 First Derivative and Graphs

THEOREM 1: Increasing and Decreasing Functions

On the interval (a, b)

f ′(x) f(x) Graph of f

+ increasing rising

− decreasing falling
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5. Graphing and Optimization
5-1 First Derivative and Graphs

Example 1:

Find the intervals where f(x) = x2 + 6x + 7 is rising and falling.

From the previous table, the function will be rising when the derivative is positive.

f ′(x) = 2x + 6

2x + 6 > 0 when 2x > −6, or x > −3.
The graph is rising when x > −3.
2x + 6 < 0 when x < −3, so the graph is falling when x < −3.
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5. Graphing and Optimization
5-1 First Derivative and Graphs

Example 1:
A sign chart is helpful:

−5 −4 −3 −2 −1 1 2

−2

2

4

6

8

10

y = ex

x

y

(−∞,−3) (−3,∞)

− − − − + + + + + + + +

Decreasing Increasing

f ′(x)

f(x)
x

−3

0
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5. Graphing and Optimization
5-1 First Derivative and Graphs

Partition Numbers and Critical Values
A partition number for the sign chart is a place where the derivative could change sign.
Assuming that f ′ is continuous wherever it is defined, this can only happen where f
itself is not defined, where f ′ is not defined, or where f ′ is zero.

DEFINITION Critical Values
The values of x in the domain of f where f ′(x) = 0 or does not exist are called the
critical values of f .

Insight:
All critical values are also partition numbers, but there may be partition numbers that
are not critical values (where f itself is not defined).
If f is a polynomial, critical values and partition numbers are both the same, namely
the solutions of f ′(x) = 0.
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5. Graphing and Optimization
5-1 First Derivative and Graphs

Example 2:

f(x) = 1 + x3, f ′(x) = 3x2. Critical value and partition point at x = 0.

−2 −1 1 2

−2

2

x

y

(−∞, 0) (0,∞)

+ + + + + + + + + + + +

Increasing Increasing

f ′(x)

f(x)
x

0

0
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5. Graphing and Optimization
5-1 First Derivative and Graphs

Local Extrema
When the graph of a continuous function changes from rising to falling, a high
point or local maximum occurs.

When the graph of a continuous function changes from falling to rising, a low point
or local minimum occurs.

DEFINITION Local extrema
Words: f has a local max (min) at x = c
Meaning: f(c) exists, f(c) is the highest (lowest) y−value nearby. That is for all x near
x = c, f(c) ≥ (≤)f(x).
We says that the local max (min) occurs at x = c, but the value of the local max (min) is
the y−value f(c).

THEOREM Existence of Local Extrema
If f is continuous on the interval (a, b), c is a number in (a, b), and f(c) is a local
extremum, then either f ′(c) = 0 or f ′(c) does not exist. That is, c is a critical point.
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5. Graphing and Optimization
5-1 First Derivative and Graphs

First Derivative Test
Let c be a critical value of f . That is, f(c) is defined, and either f ′(c) = 0 or f ′(c) is not
defined. Construct a sign for f ′(x) close to and on either side of c.

On the interval (a, b)

f(x) left of c f(x) right of c f(c)

Decreasing Increasing local minimum at c

Increasing Decreasing local maximum at c

Decreasing Decreasing not an extremum

Increasing Increasing not an extremum
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5. Graphing and Optimization
5-1 First Derivative and Graphs

f ′(c) = 0: Horizontal Tangent
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f ′(c) = 0: Horizontal Tangent
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5. Graphing and Optimization
5-1 First Derivative and Graphs

f ′(c) is not defined but f(c) is defined
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5. Graphing and Optimization
5-1 First Derivative and Graphs

f ′(c) is not defined but f(c) is defined
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5. Graphing and Optimization
5-1 First Derivative and Graphs

THEOREM 3 Intercepts and Local Extrema of Polynomial Functions
If

f(x) = anx
n + an−1x

n−1 + . . . + a1x1 + a0, an 6= 0,

is an nth−degree polynomial, then f has at most n x−intercepts and at most (n− 1)
local extrema.

Theorem 3 does not guarantee that every nth−degree polynomial has exactly local
extrema; it says only that there can never be more than local extrema.
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5. Graphing and Optimization
5-1 First Derivative and Graphs

Exercises:
1. Use a sign graph to determine the intervals where x in increasing or decreasing.
Give your answers in interval notation.

a. f(x) = 15x2 − 30x− 60

b. f(x) = 4x3 − 3x2

2. Determine the intervals where g(x) is increasing or decreasing. Identify the critical
values of g(x).

a. g(x) = x3

3
− x2 − 15x + 4

b. g(x) = x2

x+4

3. Let f(x) = −x4 + 50x2.

a. Finds intervals where f is increasing or decreasing. Present the answers three
ways: inequality notation and interval notation

b. Find x−coordinates of all local extrema.

c. Find the y−values of the local extrema.

d. Sketch a graph
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5. Graphing and Optimization
5-1 First Derivative and Graphs

Exercises:
4. Given that f(x) is continuous on (−∞,∞), use the information to sketch a graph of
f(x).

f(4) = 0, f(1) = 9

f ′(1) = 0, f ′(x) > 0, on (1,∞)

f ′(x) < 0, on (−∞, 1)

5. Determine the local extrema for the functions in Exercise 2.

Fabien Navarro MATH 209 Winter 2015 21 / 88



5. Graphing and Optimization

1 5-1 First Derivative and Graphs
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5. Graphing and Optimization
5-2 Second Derivative and Graphs

Learning Objectives
Use the second derivative to determine the concavity of functions.

Use the second derivative to determine the inflection points of functions.

Solve applications involving the point of diminishing returns.
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5. Graphing and Optimization
5-2 Second Derivative and Graphs

DEFINITION Concavity at a particular x value
Words: f is concave up at x = c

Meaning: The graph of f has a tangent line at x = c and for x−values near x = c, the
graph of f stays above the tangent line.

x

f(x)

x = 3
x

f(x)

x = 3
f concave up at x = 3 f concave down at x = 3
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5. Graphing and Optimization
5-2 Second Derivative and Graphs

DEFINITION Concavity on an interval
Words: f is concave up on an interval a < x < b

Meaning: For every x = c where a < c < b, f is concave up at x = c.

x

f(x)

a b
x

f(x)

a b
f concave up on (a, b) f concave down on (a, b)
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5. Graphing and Optimization
5-2 Second Derivative and Graphs

Consider relationship between concavity of f and the behavior of f ′

x

f(x)

m = 0

m < 0 m > 0

x

f ′(x)

y = 0
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5. Graphing and Optimization
5-2 Second Derivative and Graphs

It seems that

f ′ increasing on interval a < x < b⇐⇒ f concave up on interval a < x < b

Similarly f ′ decreasing on interval a < x < b⇐⇒ f concave down on interval a < x < b

But remember that

A function g being increasing or decreasing on an interval a < x < b is related to the
derivative of g being positive or negative on the interval a < x < b.

So f ′ being increasing or decreasing on an interval a < x < b is related to the derivative
of f ′ being positive or negative on the interval a < x < b.

This leads us to consider the derivative of f’.
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5. Graphing and Optimization
5-2 Second Derivative and Graphs

Notation
Introduce the second derivative of f

Symbol: f ′′ or f ′′(x) or d2f
dx2

Words: The second derivative of f .

Meaning: The derivative of the derivative of f that is:

f ′′(x) =
d

dx

(
d

dx
f(x)

)
=

d

dx

(
f ′(x)

)

Example:

For f(x) = −x4 + 50x2 and f(x) = xe−x find f ′′(x)
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5. Graphing and Optimization
5-2 Second Derivative and Graphs

Relationship between

Sign of f ′′ ⇐⇒ increasing/decreasing behavior of f ′ ⇐⇒ Concavity behavior of f

SUMMARY Concavity
For the interval (a, b)

f ′′(x) f ′(x) Graph of y = f(x)

+ Increasing Concave up

− Decreasing Concave down

Example:

Find the intervals where the graph of f(x) = 2x5 − 3x4 is concave up or concave down.
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5. Graphing and Optimization
5-2 Second Derivative and Graphs

DEFINITION Inflection point
Inflection point on graph of f is

a point on the graph

where the concavity changes.

This means that if f ′′(x) exists in a neighborhood of an inflection point, then it must
change sign at that point.

THEOREM Inflection point
If y = f(x) is continuous on (a, b) and has an inflection point at x = c, then either
f ′′(c) = 0 or f ′′(c) does not exist

The theorem means that an inflection point can occur only at critical value of f ′′. How-
ever, not every critical value produces an inflection point.

Example:

Find the inflection point(s) of f(x) = 2x5 − 3x4

Fabien Navarro MATH 209 Winter 2015 30 / 88



5. Graphing and Optimization
5-2 Second Derivative and Graphs

DEFINITION Inflection point
Inflection point on graph of f is

a point on the graph

where the concavity changes.

This means that if f ′′(x) exists in a neighborhood of an inflection point, then it must
change sign at that point.

THEOREM Inflection point
If y = f(x) is continuous on (a, b) and has an inflection point at x = c, then either
f ′′(c) = 0 or f ′′(c) does not exist

The theorem means that an inflection point can occur only at critical value of f ′′. How-
ever, not every critical value produces an inflection point.

Example:

Find the inflection point(s) of f(x) = 2x5 − 3x4

Fabien Navarro MATH 209 Winter 2015 30 / 88



5. Graphing and Optimization
5-2 Second Derivative and Graphs

Analytical Example:
Questions: Given a function

1 Find intervals where function is increasing or decreasing.

2 Find x−values of local max and min

3 Find y−values of the local max and min

4 Find intervals where function is concave up or down

5 Find x−values of inflection points

6 Find y−values of inflection points
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5. Graphing and Optimization
5-2 Second Derivative and Graphs

Example:

Let f(x) = xe−x, Answer questions 1-6.

1 To determine increasing or decreasing behavior of f , we should study the sign of
f ′. So we need f ′(x). Here, we have f ′(x) = (1− x)e−x.
We need to make a sign chart for f ′(x). Start by looking for x−values x = c where

I f ′(c) = 0
I f ′(c) DNE

(these are called partion numbers for f ′(x))
Are there any x = c where f ′(c) DNE?

f ′(x) = (1− x)︸ ︷︷ ︸
this is a poly, its domain is all x

× e−x︸︷︷︸
this is an exp fun, its domain is all x

Conculde: The domain of f ′ is all x. There are no x = c where f ′(c) DNE.
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5. Graphing and Optimization
5-2 Second Derivative and Graphs

Example:

Are there any x−values where f ′(c) = 0

0 = f ′(x)

0 = (1− x)︸ ︷︷ ︸
x = 1 will cause this factor to become zero

× e−x︸︷︷︸
eanything > 0 so no x-values will ever cause e−x = 0

Conclusion: the only x−value that will cause f ′(x) = 0 is x = 1.
Conclude: x = 1 is the only partition number for f ′(x).
Now make a sign chart for f ′(x)

(−∞, 1) (1,∞)

+ + + + + + − − − − −

Increasing Deacreasing

f ′(x)

f(x)
x

x = 1

f ′ = 0

f ′(2) = (1− 2)e−2 = neg · pos = neg

f ′(0) = (1− 0)e−0 = pos · pos = pos
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5. Graphing and Optimization
5-2 Second Derivative and Graphs

Example:
Conclusion of question 1:

f is increasing on interval (−∞, 1), because f ′ is positive there.

f is decreasing on interval (1,∞), because f ′ is negative there.

2 Local max at x = 1 because f changes from inc to dec (because f ′ changes from
pos to neg) and because we know that x = 1 is a critical value of f .
That is

I x = 1 is a partition number for f ′

I f(1) exists because domain of f is all real numbers.

No local min!

3 The y−value of the local max. Substitute x = 1 into f(x).

y = f(1) = 1e−1 =
1

e

4 Stratedy:
I find f ′′

I analyze sign of f ′′
I use the information about sign of f ′′ to answer question about concavity of f .
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5. Graphing and Optimization
5-2 Second Derivative and Graphs

Example:

We need to analyze the sign of f ′′(x) = (x− 2)e−x (use approach similar to what we
did when we analyzed the sign of f ′(x))
Start by finding partition numbers for f ′′(x).
Are there any x−values x = c such that

f ′′(c) DNE, or

f ′′(c) = 0

Observe
f ′′(x) = (x− 2)︸ ︷︷ ︸

this is a poly, its domain is all x

× e−x︸︷︷︸
this always exists for every x

So the product always exists for every x.
Are there any x−values where f ′′(c) = 0?

0 = f ′′(x)

0 = (x− 2)︸ ︷︷ ︸
x = 2 will cause this factor to become zero

× e−x︸︷︷︸
always pos because eanything > 0

Conclusion: f ′′(x) has one partition number x = c = 2.
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5. Graphing and Optimization
5-2 Second Derivative and Graphs

Example:

(−∞, 2) (2,∞)

−− − − − − + + + + + +

Decreasing Increasing

f ′′(x)

f ′(x)
x

x = 2

f ′′ = 0

f ′′(1) = (1− 2)e−1 = neg · pos = neg

f ′′(3) = (3− 2)e−3 = pos · pos = pos

Conclusion:

f is concave up on the interval (2,∞)

f is concave down on the interval (−∞, 2)
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5. Graphing and Optimization
5-2 Second Derivative and Graphs

Example:
5 Find x−values of inflection points.

We know the concavity changes at x = 2.

We also know that f(2) exists because f(2) = 2e−2 this will exist.

So there is a point on graph of f at x = 2.
Conclude there is an inflection point on graph of f at x = 2

6 The y−value of the inflection point is:

f(2) = 2e−2 =
2

e2
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5. Graphing and Optimization
5-2 Second Derivative and Graphs

Point of Diminishing Returns
If a company decides to increase spending on advertising, they would expect sales to
increase. At first, sales will increase at an increasing rate and then increase at a
decreasing rate. The value of x where the rate of change of sales changes from
increasing to decreasing is called the point of diminishing returns. This is also the point
where the rate of change has a maximum value. Money spent after this point may
increase sales, but at a lower rate. The next example illustrates this concept.
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5. Graphing and Optimization
5-2 Second Derivative and Graphs

Maximum Rate of Change Example
Currently, a discount appliance store is selling 200 large-screen television sets monthly.
If the store invests $x thousand in an advertising campaign, the ad company estimates
that sales will increase to

N(x) = 3x3 − 0.25x4 + 200, 0 ≤ x ≤ 9

When is rate of change of sales increasing and when is it decreasing?

What is the point of diminishing returns and the maximum rate of change of sales?
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5. Graphing and Optimization
5-2 Second Derivative and Graphs

Maximum Rate of Change Example
The rate of change of sales with respect to advertising expenditures is

N ′(x) = 9x2 − x3 = x2(9− x)

To determine when N ′(x) is increasing and decreasing, we find N ′′(x), the derivative
of N ′(x):

N ′′(x) = 18x− 3x2 = 3x(6− x)
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5. Graphing and Optimization
5-2 Second Derivative and Graphs

Exercises:
1. Find the interval where the graph of f is concave up and concave down. Identify all
infection points of f(x).

a. f(x) = x3 − 3x2 + 2x− 1

b. f(x) = e−3x2

c. f(x) = x
2x−1

2. A company estimates that it will sell N(x) units of a product after spending $x
thousand on advertising, as given by

N(x) = −0.25x4 + 13x3 − 180x2 + 10, 000, 15 ≤ x ≤ 24

When is rate of change of sales increasing and when is it decreasing?

What is the point of diminishing returns and the maximum rate of change of sales?

Graph N and N ′ on the same coordinate system
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5. Graphing and Optimization

1 5-1 First Derivative and Graphs

2 5-2 Second Derivative and Graphs

3 5-4 Curve Sketching Techniques

4 5-5 Absolute Maxima and Minima

5 5-6 Optimization
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5. Graphing and Optimization
5-4 Curve Sketching Techniques

Learning Objectives
Use the graphing strategy to sketch the graphs of functions.
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5. Graphing and Optimization
5-4 Curve Sketching Techniques

PROCEDURE Graphing Strategy
Step 1 Analyze f(x)

1 Find the domain of f .
2 Find the intercepts.
3 Find asymptotes

Step 2 Analyze f ′(x)

1 Find the partition numbers and critical values of f ′(x).
2 Construct a sign chart for f ′(x).
3 Determine the intervals where f is increasing and decreasing.
4 Find local maxima and minima.

Step 3 Analyze f ′′(x)

1 Find the partition numbers for f ′′(x).
2 Construct a sign chart for f ′′(x).
3 Determine the intervals where f is concave up or down.
4 Find inflection points.

Step 4 Sketch the graph of f
1 Draw asymptotes, local max/min, and inflection points.
2 Plot additional points as needed and complete the sketch.
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5. Graphing and Optimization
5-4 Curve Sketching Techniques

Example 1:

Apply the graphing strategy to sketch the graph of f(x) = x3 − 3x2.

Step 1 Analyze f(x)

1 Domain: the domain of f is all x−values (poly).

2 y intercept: if x = 0, then f(0) = 03 − 3(02) = 0 is the y−intercept

x intercept: if y = 0, then x3 − 3x2 = x2(x− 3) = 0 so that x = 0
and x = 3 are the x−intercepts.

3 There are no vertical or horizontal asymptotes since f is a
polynomial.
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5. Graphing and Optimization
5-4 Curve Sketching Techniques

Example 1:

Step 2 Analyze f ′(x). f ′(x) = 3x2 − 6x = 3x(x− 2)

1 Critical values of f(x) : x = 0 and x = 2.
Partition numbers for f ′(x) : x = 0 and x = 2.

2 Sign chart for f ′(x):
(−∞, 0) (0, 2) (2,∞)

+ + + + − − − + + + + +

Inc Dec Inc

f ′(x)

f(x)
x

x = 0

0

x = 2

0

3 f increases on (−∞, 0) and (2,∞) and decreases on (0, 2).

4 f has a local max at x = 0, y = 0. f has a local min at x = 2,
y = −4
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5. Graphing and Optimization
5-4 Curve Sketching Techniques

Example 1:

Step 3 Analyze f ′′(x). f ′′(x) = 6x− 6 = 6(x− 1)

1 Partition numbers for f ′(x) : x = 1.

2 Sign chart for f ′′(x):

(−∞, 1) (1,∞)

−− − − − − + + + + + +

Decreasing Increasing

f ′′(x)

f ′(x)
x

x = 1

f ′′ = 0

3 f is
⋂

on (−∞, 1); f is
⋃

on (1,∞) .

4 f has an inflection point at x = 1, y = −2
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5. Graphing and Optimization
5-4 Curve Sketching Techniques

Example 1:
Step 4 Sketch the graph of f

−4 −2 2 4

−20

−10

10

20

x

f(x) = x3 − 3x2

Fabien Navarro MATH 209 Winter 2015 48 / 88



5. Graphing and Optimization
5-4 Curve Sketching Techniques

Example 2:
If x items are produced in one day, the cost per day is

C(x) = x2 + 2x + 2000

and the average cost per unit is C(x)/x.
Use the graphing strategy to analyze the average cost function.

Step 1 Analyze C̄(x) = C(x)
x

= x2+2x+2000
x

1 Domain: Since negative values of x do not make sense and C̄(0)
is not defined, the domain is the set of positive real numbers.

2 y intercept: None

x intercept: None

3 H.A.: None

V.A.: The line x = 0 is a vertical asymptote.
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5. Graphing and Optimization
5-4 Curve Sketching Techniques

Example 2:
Oblique Asymptotes: If a graph approaches a line that is neither horizontal nor
vertical as x approaches∞ or −∞, that line is called an oblique asymptote

C̄(x) =
C(x)

x
=

x2 + 2x + 2000

x
= x + 2 +

2000

x

If x is a large positive number, then 2000/x is very small and the graph of C̄(x)
approaches the line y = x + 2.
This is the oblique asymptote.
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5. Graphing and Optimization
5-4 Curve Sketching Techniques

Example 2:

Step 2 Analyze C̄′(x).

C̄′(x) =
(2x + 2)x− (x2 + 2x + 2000)(1)

x2
=

x2 − 2000

x2

1 Critical values of C̄(x) : x =
√

2000 ≈ 44.72.
Partition numbers for C̄′(x) : x =

√
2000 and x = 0.

2 Sign chart for C̄(x):
(0, 44.72) (44.72,∞)

−− − − − − + + + + + +

Decreasing Increasing

C̄ ′(x)

C̄(x)
x

x = 44.72

0

3 If we test values to the left and right of the critical point, we find
that C̄ is decreasing on (0,

√
2000), and increasing on (

√
2000,∞)

4 C̄ has a local min at x =
√

2000, y = 91.44
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5. Graphing and Optimization
5-4 Curve Sketching Techniques

Example 2:

Step 3 Analyze C̄′′(x).

C̄′′(x) =
2x(x2)− (x2 − 2000)(2x)

x4
=

4000

x3

Since this is positive for all positive x, the graph of the average cost
function is concave up on (0,∞)
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5. Graphing and Optimization
5-4 Curve Sketching Techniques

Example 1:

Step 4 Sketch the graph of C̄.

0 20 40 60 80 100
0

500

1000

1500

2000

2500

x

C̄
(x

)

 

 
C̄(x)
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5. Graphing and Optimization
5-4 Curve Sketching Techniques

Exercises:
1. Summarize the pertinent information obtained by applying the graphing strategy and
sketch the graph of y = f(x).

a. f(x) = x2

x+1

b. f(x) = 2x2−3x
x−2

2. Nicole owns a company that makes luxurious velvet robes. Her total cost to make x
robes can be modeled by the function

C(x) = 1500 + 3x2, x > 0.

a. Find the average cost function.

b. How many robes must be produced for the average cost to be minimized?

c. What is the minimum average cost?
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5. Graphing and Optimization

1 5-1 First Derivative and Graphs

2 5-2 Second Derivative and Graphs

3 5-4 Curve Sketching Techniques

4 5-5 Absolute Maxima and Minima

5 5-6 Optimization
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5. Graphing and Optimization
5-5 Absolute Maxima and Minima

Learning Objectives
Find the absolute maxima and absolute minima of functions.

Use the second derivative test for local extrema.
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5. Graphing and Optimization
5-5 Absolute Maxima and Minima

DEFINITION: Absolute Maxima and Minima
f(c) is an absolute maximum of f if f(c) > f(x) for all x in the domain of f .

f(c) is an absolute minium of f if f(c) < f(x) for all x in the domain of f .

THEOREM 1:
If a function f is continuous on closed interval [a, b], then f is guaranteed to have an
absolute max and an absolute min on that interval.

THEOREM 2:
The only place where an abs max or min can ever occur (if they occur at all) is at the
x−values that are

critical values

endpoints of the domain

Fabien Navarro MATH 209 Winter 2015 57 / 88



5. Graphing and Optimization
5-5 Absolute Maxima and Minima

DEFINITION: Absolute Maxima and Minima
f(c) is an absolute maximum of f if f(c) > f(x) for all x in the domain of f .

f(c) is an absolute minium of f if f(c) < f(x) for all x in the domain of f .

THEOREM 1:
If a function f is continuous on closed interval [a, b], then f is guaranteed to have an
absolute max and an absolute min on that interval.

THEOREM 2:
The only place where an abs max or min can ever occur (if they occur at all) is at the
x−values that are

critical values

endpoints of the domain

Fabien Navarro MATH 209 Winter 2015 57 / 88



5. Graphing and Optimization
5-5 Absolute Maxima and Minima

DEFINITION: Absolute Maxima and Minima
f(c) is an absolute maximum of f if f(c) > f(x) for all x in the domain of f .

f(c) is an absolute minium of f if f(c) < f(x) for all x in the domain of f .

THEOREM 1:
If a function f is continuous on closed interval [a, b], then f is guaranteed to have an
absolute max and an absolute min on that interval.

THEOREM 2:
The only place where an abs max or min can ever occur (if they occur at all) is at the
x−values that are

critical values

endpoints of the domain

Fabien Navarro MATH 209 Winter 2015 57 / 88



5. Graphing and Optimization
5-5 Absolute Maxima and Minima

Suppose that the domain of a function f is a closed interval [a, b].
and suppose that it is known that f is continuous on [a, b].

Theorem 1 guarantees that there will be both an absolute maximum and an absolute
minimum on the interval [a, b].

and Theorem 2 tells us where (at what x−values) the absolute max and min have to be
found.

at x values that are critical values of f

at x values that are endpoints (x = a, x = b).

This give us the idea for a strategy:
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5. Graphing and Optimization
5-5 Absolute Maxima and Minima

PROCEDURE Finding Absolute Extrema on a Closed Interval
Used for finding the absolute extrema for a function f that is continuous on a closed
interval [a, b].

Step 1 Identify the closed interval [a, b].

Step 2 Confirm that f is indeed continuous on the interval [a, b].

Step 3 Find the critical values of f .

Step 4 List all important x−values in order in a table.

Step 5 Find the correspond y−values.

Step 6 Identify the largest y−value as the abs max and the smallest y−value
as the absolute min. State your conclusion clearly
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5. Graphing and Optimization
5-5 Absolute Maxima and Minima

Example:

Find the absolute extrema of f(x) = x4 − 6x2 + 5 on the interval [−3, 2].

Step 1 The interval [−3, 2] is a closed interval.

Step 2 The function f is continuous on [−3, 2] because f is a polynomial

Step 3 Critical values of f :
Start by finding f ′(x) = 4x3 − 12x.
Are there any x−values that cause f ′(x) to not exist? f ′(x) is a
polynomial so f ′(x) exists for all x.
Are there any x−values that cause f ′(x) = 0?Set f ′(x) = 0 and solve
for x.

4x3 − 12x = 0

Identify common factor 4x and rewrite to highlight the common factor.

4x · x2 − 4x · 3 = 0

Now factor out the 4x
4x(x2 − 3) = 0
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5. Graphing and Optimization
5-5 Absolute Maxima and Minima

Example:
Step 3 Factor some more

4x(x−
√

3)(x +
√

3) = 0

Solution: x = 0, x = −
√

3, x =
√

3 these are the partition numbers for
f ′(x) because they cause f ′(x) = 0.

Observe that f(x) exists at all three of these partition numbers for f ′

(because f is a poly, so its domain is all real numbers).

So the three x−values x = 0, x = −
√

3, x =
√

3 all satisfy
f ′(x) = 0
f(x) exists

So these three x−values are the critical values for f .
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5. Graphing and Optimization
5-5 Absolute Maxima and Minima

Example:
Step 4-6 List of important x− values

Important x−values Corresponding y−values

x = −3 y = 32

x = −
√

3 y = −4

x = 0 y = 5

x =
√

3 y = −4

x = 2 y = −3

Conclusion:
The absolute max is y = 32 and it occurs at x = −3
The absolute min is y = −4 and it occurs at x = −

√
3 and x =

√
3
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5. Graphing and Optimization
5-5 Absolute Maxima and Minima

Example:

Find the absolute extrema of f(x) = x4 − 6x2 + 5 on the interval [−1, 2].

Step 1 The interval [−1, 2] is a closed interval.

Step 2 The function f is continuous on [−1, 2] because f is a polynomial

Step 3 Critical values of f :
x = 0 and x =

√
3

����
x = −

√
3 not in the interval [−1, 2]
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5. Graphing and Optimization
5-5 Absolute Maxima and Minima

Example:
Step 4-6 List of important x− values

Important x−values Corresponding y−values

x = −1 y = 0

x = 0 y = 5

x =
√

3 y = −4

x = 2 y = −3

Conclusion:
The absolute max is y = 5 and it occurs at x = 0
The absolute min is y = −4 and it occurs at x =

√
3
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5. Graphing and Optimization
5-5 Absolute Maxima and Minima

Example:

Find the absolute extrema of f(x) = x4 − 6x2 + 5 on the interval (−∞,∞).

Observe f is continuous but the interval is not closed. We are not guaranteed any max
or min.
We cannot use the closed interval procedure!
So what do we do?
A variety of math technique have to be used, depending on the problem.
Observe f is even degree polynomial with positive leading coefficient. So both ends go
up.

−10 −5 5 10

−10

−5

5

10

x

f(x)

So graph will have absolute min, but will not have an absolute max.
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5. Graphing and Optimization
5-5 Absolute Maxima and Minima

Example:
Th 1 tells us that the only places where abs max or min can occur at

critical values

endpoints

We don’t have any endpoints in this example, so the abs max or min must occur at
critical values.
From previous example, we know that the critical values of f are:
x = 0, x = −

√
3, x =

√
3.

So it must be that y = −4 is the abs min (it occurs at x = −
√

3 and x =
√

3). No abs
max!
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5. Graphing and Optimization
5-5 Absolute Maxima and Minima

Second-Derivative Test
Let c be a critical value of f(x).

f ′(c) f ′′(c) Graph of f is f(c)

0 + Concave up Local min

0 − Concave do,wn Local max

0 0 Concave up Test fails
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5. Graphing and Optimization
5-5 Absolute Maxima and Minima

Example:

Find the local maximum and minimum values of f(x) = x3 − 6x2 on [−1, 7].

f ′(x) = 3x2 − 12x = 3x(x− 4)

f ′′(x) = 6x− 12 = 6(x− 2)

Critical values: x = 0 and x = 4

f ′′(0) = −12, hencef(0) local max

f ′′(4) = 12, hencef(4) local min
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5. Graphing and Optimization
5-5 Absolute Maxima and Minima

THEOREM 3: Second-Derivative Test for Absolute Extremum
Let f be continuous on interval I with only one critical value c in I.

If f ′(c) = 0 and f ′′(c) > 0, then f(c) is the absolute minimum of f on I.

If f ′(c) = 0 and f ′′(c) < 0, then f(c) is the absolute maximum of f on I.

The second-derivative test does not apply if f ′′(c) = 0 or if f ′′(c) is not defined. The
first-derivative test must be used.
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5. Graphing and Optimization
5-5 Absolute Maxima and Minima

Example:

Find the absolute minimum value of f(x) = x + 4
x

on (0,∞).

f ′(x) = 1− 4

x2
=

x2 − 4

x2
=

(x− 2)(x + 2)

x2

f ′′(x) =
8

x3

The only critical value in the interval (0,∞) is x = 2. Since f ′′(2) = 1 > 0, f(2) is the
abs min value of f on (0,∞)
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5. Graphing and Optimization
5-5 Absolute Maxima and Minima

Exercices:

1. Use the second derivative test to find the local extrema for f(x) = 2x3 − 4x2 − 10

2. Let f(x) = 20− 4x− 250
x2 . Find all absolute extrema on the interval (0,∞)

3. Find the absolute maxima and absolute minima, if they exist, for the function
f(x) = x3

3
− x2 + 4 on the given intervals.

a. [−4, 0]

b. [−4, 3]
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5. Graphing and Optimization

1 5-1 First Derivative and Graphs

2 5-2 Second Derivative and Graphs

3 5-4 Curve Sketching Techniques

4 5-5 Absolute Maxima and Minima

5 5-6 Optimization
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5. Graphing and Optimization
5-6 Optimization

Learning Objectives
Solve applications requiring optimization of area or perimeter.

Solve applications requiring optimization of revenue, profit, or cost.

Solve inventory control applications.
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5. Graphing and Optimization
5-6 Optimization

Optimization involves absolute extremum problems.

Possible complications:
problems may be word problems.

domain might not be closed intervals.

domain might not even be specified (you will have to figure it out).

problems might involve more than one variable.

The techniques used to solve optimization problems are best illustrated through exam-
ples. Let’s begin with some examples.
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5. Graphing and Optimization
5-6 Optimization

Example 1:
Find two positive numbers x, y such that

the product of the numbers is 9000.

the sum 10x + 25y is minimized.

Two equations:

Eq I: xy = 9000

Eq II: 10x + 25y = S (minimize this Sum)

Eliminate one of the variables:
Solve equation I for y: y = 9000

x

Substitute into equation II: 10x + 25 9000
x

= S
This describes a function S of the variable x. In function notation

S(x) = 10x + 25
9000

x

The domain is (0,∞) because x must be positive.
Goal: Find absolute min of S(x) on the interval (0,∞) .
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5. Graphing and Optimization
5-6 Optimization

Example 1:
If there are any abs extrema, we know that they can only occur at x−values that are
critical value of S(x). So we must find them.

Start by finding partition numbers of S′(x) that is x−values where S′ = 0 or S′ DNE.

S(x) = 10x + 25
9000

x
= 10x + 25(9000)x−1

S′(x) =
d

dx

(
10x + 25(9000)x−1)

= 10 + 25(9000)(−1)x−2

= 10− 25(9000)

x2

Any x−values that cause S′ to be undefined?
Yes: x = 0, but it is not in our interval (0,∞)

Are there any x−values that cause S′(x) = 0?
Set S′(x) = 0 and solve for x.
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5. Graphing and Optimization
5-6 Optimization

Example 1:

10− 25(9000)

x2
= 0

10 =
25(9000)

x2

10x2 = 25(9000)

x2 = 25(900)

x =
√

25(900) =
√

25
√

900

= 5 · 30 = 150

So x = 150 is a partition number for S′ because S′(150) = 0.

Is x = 150 a critical value for S?
Does S(150) exists?
S(150) = 10(150) + 25(900)

150
, this exists!

So x = 150 is a partition number for S′(x) has property that S(150) exists.
So x = 150 is a critical value for S. This must be the place where the min occurs.
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5-6 Optimization
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5. Graphing and Optimization
5-6 Optimization

Example 1:

Study sign of S′(x).
(0, 150) (150,∞)

−− − − − − + + + + + +

Decreasing Increasing

S′(x)

S(x)
x

x = 150

0

So x = 150 is the location of the absolute min.
We still need to find y. Must satisfy

xy = 9000

y =
9000

x

y =
9000

150
= 60

(x, y) = (150, 60)
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5. Graphing and Optimization
5-6 Optimization

Example 2:
Find the dimensions of a rectangular area of 225 square meters that has the least
perimeter.

Let L = lenght,W = width.
The formulas for area A and perimeter P are

A = L ·W = 225

P = 2L + 2W

From the area equation solve for L and substitute that value of L into the perimeter
equation to get an equation in one unknown:

L =
225

W

P = 2
225

W
+ 2W =

450

W
+ 2W

We wish to minimize P (W ), so we take the derivative and look at the critical values.
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5. Graphing and Optimization
5-6 Optimization

Example 2:

P ′(W ) =
d

dW

(
450

W
+ 2W

)
=
−450

W 2
+ 2

=
2W 2 − 450

W 2
=

2(W 2 − 225)

W 2
=

2(W − 15)(W + 15)

W 2

There is a critical value at W = 15. (Disregard W = –15 since the width cannot be
negative).

P ′′(W ) =
900

W 3

P ′′(15) > 0, so this is a local minimum and since W = 15 is the only critical value, then
P (15) = 450

15
+ 2 · 15 = $60 must be the absolute minimum value of P (W ). The least

perimeter occurs when W = 15.
For this value L = 225

15
= 15, so the shape is a square of side 15 meters, with minimum

perimeter of 60.
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5. Graphing and Optimization
5-6 Optimization
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negative).

P ′′(W ) =
900

W 3

P ′′(15) > 0, so this is a local minimum and since W = 15 is the only critical value, then
P (15) = 450

15
+ 2 · 15 = $60 must be the absolute minimum value of P (W ). The least

perimeter occurs when W = 15.
For this value L = 225

15
= 15, so the shape is a square of side 15 meters, with minimum

perimeter of 60.

Fabien Navarro MATH 209 Winter 2015 80 / 88



5. Graphing and Optimization
5-6 Optimization

PROCEDURE Strategy for Solving Optimization Problems

Step 1 Introduce variables, look for relationships among these variables, and
construct a math model of the form: Maximize (minimize) f(x) on the
interval I.

Step 2 Find the critical values of f(x).

Step 3 Find the maximum (minimum) value of f(x) on the interval I.

Step 4 Use the solution to the mathematical model to answer all the questions
asked in the problem.
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5. Graphing and Optimization
5-6 Optimization

Example 3:
A company manufactures and sells x television sets per month. The monthly cost and
price-demand equations are:

C(x) = 60, 000 + 60x

p(x) = 200–x/50, for 0 ≤ x ≤ 6, 000

a Find the production level that will maximize the revenue, the maximum revenue,
and the price that the company needs to charge at that level.

b Find the production level that will maximize the profit, the maximum profit, and the
price that the company needs to charge at that level.
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5. Graphing and Optimization
5-6 Optimization

Example 3:
a The monthly revenue is

R(x) = xp(x) = x(200–x/50) = 200x− x2

50

The mathematical model for this problem is

Maximize R(x) = 200x− x2

50
0 ≤ x ≤ 6, 000

Differentiate and set to zero:

R′(x) = 200− x

25
= 0

x = 5000
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5. Graphing and Optimization
5-6 Optimization

Example 3:
a Use the second-derivative test for absolute extrema:

R′′(x) = − 1

25
< 0, for allx

Since x = 5000 is the only critical value and R′′(x) < 0,

Max R(x) = R(5000) = $500, 000

When the demand is x = 5000, the price is

p(5000) = $100

b Profit = Revenue–Cost

P (x) = 200x− x2

50
− (60000 + 60x) = −x2

50
+ 140x− 60000

P ′(x) =
−x
25

+ 140 = 0

x = 3500
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5. Graphing and Optimization
5-6 Optimization

Example 3:
Use the second-derivative test for absolute extrema:

P ′′(x) = − 1

25
< 0, for all x

Since x = 3500 is the only critical value and P ′′(x) < 0,

Max P (x) = P (3500) = $185, 000

When the demand is x = 3500, the price is

p(3500) = $130

Summary:
The maximum revenue of $500, 000 is achieved at a production level of 5000 sets per
month, which are sold at $100 each. (The profit is P (5000) = $140, 000.)

The maximum profit of $185, 000 is achieved at a production level of 3500 sets per
month, which are sold at $130 each. (The revenue is R(3500) = $455, 000).
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5. Graphing and Optimization
5-6 Optimization

Example 4: Inventory Control
A pharmacy has a uniform annual demand for 200 bottles of a certain antibiotic. It
costs $5 per year for a storage place for one bottle, and $40 to place an order.

How many times during the year should the pharmacy order the antibiotic in order to
minimize total cost?

Example: If you use 4 orders of 50 bottles each, you need 50 storage places. If you
use 10 orders of 20 bottles each, you only need 20 storage places, but it costs more to
order.

Les x = number of bottles per order, and y = number of orders.
The total annual cost is C = 40y + 5x.
In order to write the total cost C as a function of one variable, we must find a
relationship between x and y.
The total number of bottles is xy = 200, so y = 200

x
.
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5. Graphing and Optimization
5-6 Optimization

Example 4: Inventory Control
Certainly, x must be at least 1 and cannot exceed 200. We must solve the following
equation:

Minimize C(x) =
8000

x
+ 5x 1 ≤ x ≤ 200

C′(x) = −8000

x2
+ 5 = 0

x = 40

C′′(x) =
8000

x3
> 0 for x ∈ (1, 200)

Therefore,

Min C(x) = C(40) =
8000

40
+ 5 · 40 = 400

y =
200

40
= 5

The pharmacy will minimize its total cost by ordering 40 bottles five times during the
year.
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5-6 Optimization

Exercises:
1. Find two positive numbers x, y such that

the sum 2x + y = 900.

the product A = xy is maximized.

2. A farmer needs to build a fence to make a rectangular yard next to an adjacent
pasture. He only needs to fence 3 sides because the 4th side already has a fence. He
has 900 feet of fence to use.
What dimensions give the largest yard?

3. Katie is a seamstress who makes wedding dresses. Her monthly cost and revenue
functions when making x wedding dresses can be modeled approximately by
C(x) = 200 + 150x and R(x) = 700x− 35x2, where 0 ≤ x ≤ 15

How many dresses should Katie make each month to maximize revenue?

How many dresses should Katie make each month to maximize profit?

Are the values from parts a and b the same? If not, explain why they may be
different.
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