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estimation of the marginal density in semiparametric autoregressive
time series models
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6 Proof of assertions (13) and (14) in the proof of Theorem 1

6.1 Proof of assertion (13)

We set for j € N,
Hnj =0 (85,6(8) ts > n’—j) .

For this part we set

1 _ .
Zi(s,v) = LK, [ mit _ ] ,

Ot Ot
Zi(s,v) = Zi(s,v) — E[Z;(s,v)] and
Svij = Avi—j —E (A'U,i(n’fj)‘gn’—j)
E [Av,i(n’fj) -E (Av,i(n’fj) €n’—j) ‘Hn(jq)] .

Using the independence properties, observe that

UV — Myy

1
vaij = Av,i(n’fj) - M/K(w)fa [ — bw} dw

eF7
— /K(h)gy (E‘nlfj + bh) dh =+ E [Av,i(n’—j)} .

From the first writing of S, ;;, we have for v,v € I,

n'—1 n’ 2

E Z Z [Sv,i5 — Sb,ij]
J=t i=n'—j—¢
n'—1 n’ 2
<2y [B] 3 1z - Ziso0))| Ls)ds
j= i=n'—j—{
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Moreover, for s € R, we have, using /—dependence,

2
n’ { k-1

E Z [Zi(s,v) — Zi(s,0)]| < ZZ | Zhtge(s,v) — Zh+gg(s,®)\2.

i=n/—j—/ h=1g=

Moreover, we have

/\Z S, v) (5,9)| fo(s)ds

— . 1 = o 2
< 2IE/ —K, [U Tt 3] - —Kp {U W - 3} fe(s)ds
T O ¢ it
Clv — o|™ v—wv 20 v — My
< K(z —bz|d
< AT / bow +z fe p z ) dz
< Gl [ [y o—op| K’ (w)|* "' dwd
= SRR we[z,z-i-ga;iz]‘ (w)] waz
c (146
< EE lv — o1,
Then we get,
n'—1 n' 2 Vol
ngE Z Z [Sv,ij = Svas]| < WW — |+ (20)
j=L i=n'—j—¢L
Note that nbgﬂé - — 0. Moreover, it is easily seen that
n—1 n 2
1 — cv

j=t i=n—j—¢

This means that G, : v — — /2 Z ZZ —n—i_s Sv,ij converges pointwise to 0 in probability. Note
that Gy, is a random function taklng Values in C (I), the space of real-valued and continuous functions
defined on the compact interval I. From (20) and the Kolmogorov-Chentsov tightness criterion in
C(I) (see for instance Kallenberg (1997), Corollary 14.9), we (13).

6.2 Proof of assertion (14)

We have to prove the following convergence in probability:

n31/2 SUII) Z /K(h) [gv(ej + bh) — gy(g5)] dh| = op(1). (21)
" GaeTn

The proof is divided into two parts. In the first part, we show that

n31/2 SUII) Z /K(h)]E [gv(ej + bh) — gy(g5)] dh| = op(1). (22)
vel | Ser.




We have
/ K(W)E [g,(c; + bh) — go(e)] dh = / / K (1) [go (e + bh) — go(w)] fo(w)dudh
— [ [ K)gu2) e = ) = £.2)

Using assertion (11) given in the paper, the condition v/nb? — 0 and the fact that sup,¢; [ g, (2)dz <
Csuper [ fo-m; (2)dz < C, we get (22). To show (21), it remains to show that
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1
S| Y [ K [5.05 T00) - 5.5 dn
n vel (i,5)€Tn

(23)

e 3o [ 0 [ ) -5
=1

n yer
ve j=

= O[p(l),

1 n’
where ¢, = > 0 Ljijj>e-

1. To show (23) when [ is the singleton {v}, we use Jensen inequality and the fact that the
translations are continuous in L?(f.) for any function in IL?(z). More precisely, we have

2
nTE| Y [ E®) [0+ 0R) - gu(5)] dh
(4,3)ETn

n' 2
< n Yy 2 K (h) [gy(u + bh) — gy(u)] dh| fe(u)du

; y / ‘ / g g
< wln [ [ K@) a5~ oo f(w)dudn

2

< [l +2) = g . (w)du
= op(l).

2. To show (23) when I is a compact interval not reduced to one point, we proceed in two parts.

(a) We first show that

Jsup |57 [ (W) g (o4 bh) ~ gu()] dh| = 0e(1). (24)
=1

n yel
’UEJ

To this end, we will use Lemma 19.34 in van der Vaart (1998). We set
(@) = [ K () g+ bh) — g, (2] b

3



For the family G, 1 = {gn : v € I} of functions, we consider the envelope function G,
defined by

7) = / K(h) [G(x + bh) + G(x)] dh,
where G is defined in assumption A7. For bounding the bracketing numbers of this
family, we first observe that if [fi, f2] is an e—bracketing in Gy, then f; < g, < f2 (i.e
[ (f2— f1)*dp < €?) entails that
fur@) = [ K@i+ 0b) - fole) dn
< guole) < [ KOl +5h) — ()] dh = fa(a).

Moreover, one can show that

/|fn,2($) — [ (@) fe(z)de < 462

Then, we have
Ny (\@G, Qn,I,Lz(&?o)) < Ny (6,61, L2(p))

and the bracketing numbers of the family G, ; are of polynomial decay. Next we show
that

sup | [ gno@f-(a)ds| = op(1). (25)
vel
To show (25), we consider for a given € > 0, some brackets I3, I, ..., I7 that cover ;.

For each integer 1 < p < T, we consider an element g,, € I,. Then, for 1 <p < T, if
I, = [fl(p),fép)}, we set I, , = [fflpl),f } with

12w = [ K [£7 + oh) - (@) dn

JRC: / K(h (p> (z + bh) — ffp)(x)} dh.

Then, if g, € I,, we have g, , € I, and

/ggyv(x)fs(x)dx < 2/ [Qn,v(x) _gn,vp(x)}Zfa(x)df’:‘f'Q/ggz,vp(x)fa(x)dx
462_{_211<na<xT/g721’vp(l‘)f5(l')d:E

P>

IN

Since for each v € I, we have [ gy, (%)% f-(x)dz = o(1), we conclude that

lim sup/gg’v(x)fa(x)da: < 4é2.

n—oo

Since € is arbitrary, we conclude (25).



Moreover, setting, for k > 0, a, (k) = k/Log [N (KJ, gn,l,]LQ(ao))}, we have

\/EEGH(EO)]IGn(EQ)>\/ﬁan(n) < WEGTL({‘:O)ZJFO

Here Log(z) = log(z) A 1. Then, from (2 ) one can choose k? = k2 > [ gno(2)? fo(z)dx
such that x — 0 and n%2a,(k)'*° — oco. Hence, from Lemma 19.34 in van der Vaart
(1998), we deduce that

—Esup gnw(gj)| = op(1)

and hence (24).
(b) Finally, we have

sup (=% " ga(e fngsj

vel (i,5)€Tn

1 &
Jm 2l / K (k) [G () + bh) + G (¢, dn

IN

1 n—n+20—1
< = , , RS Nk S
< n;:l/K(hHG(a]+bh)+G(5])]dh G

Using the fact that £ ~ n! with t < 1/2, we deduce from assumption A7 that
sup |n /2 Z Gnw(€j) Zg”” (g5)] = op(1).
vel (i) ETn ‘F

From the last convergence and from (24), we deduce (23).

7 Proof of Corollary 1

From Theorem 1, Theorem 2 and assumption A8, we have
\f[fX() } ZMZU+OIP

The first part of the corollary concerns the convergence of the finite dimensional distributions. Note
also that the previous convergence is uniform if assumption A7 holds true. Convergence of finite
dimensional distributions is straightforward using a central limit theorem for weakly dependent
time series. For instance, the central limit theorem given in Zhao (2010), Theorem 3, applies in
our case. For the uniform convergence, it remains to show the tightness of the empirical process



Gp:v— ﬁ St M;,. Since we have assumed A7, it is only necessary to study the tightness in
C(I), the space of real-valued and continuous function defined on I, of

oo i (152) e (2]

To this end, we use the Kolmogorov-Chentsov criterion (see for instance Kallenberg (1997), Corol-
lary 14.9). If v, v € I satisfy v < v, we have from Jensen inequality,

< v—v|/E‘G' du

< |v—o*supE |G, (u )‘ :
uel

~ ~ 2
E|Gn(v) Gn(z‘;)‘

Then the tightness will follow if we show that

supE é;(u)f =0(1). (26)

uel
1 U — m;
S = () - ()]
\Fg A\ o "\ o
Moreover, for ¢ < j, v € I and £ = j — i, we have
1 v —m; 1 v —m;
Cov[ﬂ”é( Z>>2fé< j>]
Ui (oF) O'j aj
1 vV —m; 1 V— My
el (752) - (1)
J J jl Jt

Then using assumption A2 and assumption A5, we deduce that there exist C' > 0 such that for

all ¢ <7,
—my; 1 v —Mm;
COV[ fg( o l)?Q_Qé( U] J)
J

where a € (0,1) is defined in assumption A2. The proof of the last inequality uses the same
arguments than the proof of Lemma 6. This control of covariances immediately implies (26). The
tightness criterion of Kolmogorov-Chentsov applies. The proof of Corollary 1 is now complete.[]

Note that

o 142
v

8 Proofs of the results of Subsection 5.6

In the subsequent proofs, C' > 0 will denote a generic constant that can change from line to line.
Moreover, if X is a random variable, we set X = X — E(X).
We first observe that if the kernel K is Lipschitz continuous and bounded, we have for any
€ (0,1),
K (2) = K(y)] < 2IIK o)™ Lip(K)?|z — y|*.

In particular, K is Holder continuous with exponent ¢. This fact will be used in the proof of the
lemmas 1 and 2.



8.1 Proof of Lemma 1
Since /n (é - 90) = Op(1), it is enough to prove that

n

. 1
mKb [£0.i5(0)] = oi(0)

1
— sup
n ij=1 vel,0€B

Ky [Lo5(0)] ‘ = op ("71/2> :

where € > 0 is defined in assumption A2. Let g be a positive real number such that 2¢ < min(d, s).
Using assumption A2, we have

< 2(0) —52(0)|*.
_C’I;leaéc|az(0) 01(9)’

1 1
ZoREn]

max
0o

One can choose for instance C' = 279y ~1=24, Moreover, setting ¢ = s/2, we have

| K3 [L0,5(0)] — Kb [Lo,i(0)]]

Ch1-1 ]ﬁv,ij(e) - 7v,ij(9)‘q

Co™ 1 [Imi(8) — mi(9)|7 + mi(6)|7 - [o7(8) — 57(0)|"]

+ OO |y (0) — T (0)| + |0 (0) = T5(0)]" - 1 X5 —my(0)]7] -

<
<

Using assumption A2 and the Cauchy-Schwarz inequality, we deduce that

sup | f(0) - 7o) = 0 (nbﬂ Z) =00 (15 )
=1

vel

8.2 Proof of Lemma 2
Since /n (é - 90> = Op(1), it is enough to prove that

1 1
me [L0,i(0)] — on @

1 n
gZ Sup
,j=1

Gi= vEI,He@o,e

K [LUW(Q)]‘ = op (n—1/2> ,

where € > 0 is defined in assumption A2.

e As in the proof of Lemma 1, we use assumption A2 to get

ai(0)  ou(0)

< 200) — 52 s
—= Clglea‘ex |Uz (0) 0@8(0)‘

1 1 ‘

e Using the previous point, we have also for ¢ = s/2,

sup | Kp [L0,i5(0)] — Kb [Lyi50(0)]|

vel
< Cb ' sup |L£0,i5(0) — Loy 450(0)]
vel
< OO [ma(8) — man(0)| + [ma(0)] - |o2(0) — o%(6)|]

+ O Imy(0) — mye(0)|T + 1X; — Xjol T+ |03 (0) — 050(0)|" - [X; — m;(6)]7] .
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Using assumption A2, we get
ot/

E sup Ky [Lo3i(0)] = Kb [Loige(0)]] < Oy

0€0q,c,vel

Using the two previous points and assumption A2, we get

n

) ) 1 a€/2
sup me [Ev,l](g)] - me [‘CUJJK(G)]’ - O]P (W) ’

n2
n ij=1VEL0EO0 ¢ o

Then the result follows from the conditions £ ~ nt, 0 < a < 1 and nb — co.J

8.3 Proof of Lemma 3

Let 01 € (0,26/3) such that t < 2‘2333 We set N = N,, = n~2/3p=2-91_ For simplicity of notations,

we suppress the dependence in n of our quantities. Then we set

ghsN) = (“N) VeI AN —E ((_N) V€S A N\E(f)l) :

We first show that

}?61%22)6(“ — g{polN) ‘ = op(1). (27)
s=1 g=1

To this end, we use the bound

IN

‘g(hs _ hsN)‘ ’éféh,s) 1

v TE Uéhs

(s)
)éf;h’s) >N|7—9—1]

‘é(h,S)

IN

‘géh,s)

+ N]E Ué‘éh’s)

|7;<s>1] |

]l)&(]h,s) SN

For € > 0, we have

P %;%ZZ?E(’”

> €

g(hvs) >N

IN
=

max ‘géh’s) >N
heH
1<s<4

1<9<k

Using the expression of N and the assumptions of the lemma, the latest probability tends to zero
in probability. Moreover

ahw 7 ) = 1\
LS5 (7)o st -




This show (27). To end the proof we have to show that

L k

(h,s,N)
R 2|25 = o) -

We will prove (28) using the exponential inequality of Freedman for martingales (see Freedman
(1975)). Let ¢,€ > 0. First we choose M > 0 such that

i fé%ZZE<

M
\7-(79 1) v <.

Using the fact that

(‘g h,s,N )2 ’7;%1) < E (‘5 h,s) 2 |7—g(i)1> ,
we get

~ I (h,s.N) )2 () M
glef%z:: gég SN S ¢ maX;gz; < (e |7;1> <

‘ k ¢k M

< ZZP Zgéh,s,N “ZE |:‘£(hsN‘ m(j)l] <=

heH s=1 g=1 ¢ g=1 nb

<

Then (28) follows from our conditions on b, ¢, N,H. The proof of Lemma 3 is now complete.[]

8.4 Proof of Lemma 4

For the proof of Lemma 4, we need two additional lemmas which are stated below. For 6 € O,
the density of £4(0) will be denoted by fp. Then, we have the expression

o (0) a;(0) w m;(0) —m;(6o)
ffj(90)fE (Uj(9o) T ;(60) >] : (29)

The following lemma is given without proof. The assertions given below are mainly a conse-
quence of the Lebesgue theorem for the derivative of an integral depending on a parameter.

fo(w) =E [

Lemma 5. Assume that assumptions A3 and A5 hold true.

1. We have supgeg, . wer fo(w) < 0o. For 0 € Oq, the function w — fo(w) has a derivative fj
such that supgeg, . wer |fo(w)| < 0o. Moreover, there exists a number C > 0 not depending
on 0, w such that

|[fo(w) = f5,(w)] < C (L +Jwl) [0 = bo]l-



2. For each w € R, the function 6 — fg(w) is two times differentiable. Moreover, there exists a
number C' > 0 not depending on w, 0 such that

[folw) = fao(w)| < C (1 +0?) 6= b0l |fatw)| < C 1+ )

and
’fao(wl) - f@o(wQ)‘ < C(1+ |wi]) - Jwr — wa.

3. There exist two constants C1 and Co such that

| fo(w) = fo, (w)| < (C1 + Cafw]) [0 — bol-

4. If F: R — R a function continuously differentiable and with a compact support. Then, for
6 € B(fo,€), we have

E[F (c(60))] = / Flw)fo(w)dw, E [0)F ((6))] = / F(w) fo(w)du.

The next lemma is also given without proof because it results from simple computations.

Lemma 6. Assume that assumption A3 holds true. We set U;(0) = W and V;(0) =
%) - Note that g;(0) =U;(0) + V;(0)e;.

oj(0)
1. We have E|U,] AR E|%[ E || I
. We have b < 00, 7 <oo, By < oo, Elg|5, . < oo and E[&;], < oo.
00,€ 00,€ 00,€
9 .2 .
2. We have E {supvel \Lyvi|ooe} < 00, E [sup,cr | Lo, < o0 and E [sup,cr (Lo, < 00.
’ 00,€ 00,€

3. Let n be a positive number. There exists a positive real number C' such that

S0P [Lui(8) — Lua(Q)] < O (1+supvef i )
[v—w|<n 00,€
0—¢lI<n
and
sup ’ L,i(0) — Lw,i(C)H <Cn <|<'7i,<7¢|oo,E + supyer | Lo, ) -
[v—w|<n 00,€
16—Cll<n

Proof of Lemma 4. We only prove the result for the conditionally heteroscedastic case, the
homoscedastic uses similar arguments and is simpler.

1. Tt is only necessary to prove that

. 2 n2
> s Byl =0s ()

.. ve
(1.7)€Zn g B(Bg,¢)
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We recall that

Au,ij(0) = 03 (0) K [Loie(8) — €e(0)] + 07, (8) | Luie(8) — €5e(8)| K [Luie(8) — £je(6)]
We define (6) ®) (60)
mge(bo) — My 05e(b0
Ui(0) = —2 J . Vi(0) = =2
3¢(0) aje(0) 0 =0
Then €54(0) = Uje(6) + Vje(8)e;. Moreover
. 2
E- (€602 - [ K4 (Luie(0) = 56(0)) ]
L Vie(0) 2, [ Loie(0) — Uje() — bw
= [ =Uje(0) + L= [Lyie(0) — Uje(0) — bw] ||* - | K = J
| 100 + 4 ) = Vi) = bl | |1 ) . (P
-2 -2
c o 12 Vie 2 |UjeVie
< o |1+ |0 it Lo | YV
- b3 + Y 0,€ * Vjé * iléll)| ’Z‘Oo’€ ij
Then we get
By, (4w (0]
-2 .
: 2 . 2 .2 Vi U, V;
< % 1+ 02-2[,0,;2,5 +sup Ly ¢ +E‘Ujg‘ +E Zit —i—sup\LU’ig\zo{E ittt
b 00,€ vel 00,€ 00,€ ‘/}f coc vel ’ V}‘g
The result follows from assumption A3 and Lemma 6.
2. Since 0(6) 2 (6)
. m; g,
jel0) = —— 250 — “Ftein(6),

oje(0)  0je(0)

we have, using the compact support of the kernel K, and the equality Z—J = ;7,
J ,

2

: C 1 . '
IO 163 (Loi6) ~ 250D < 55 |V ol + |5 %] - |1 50 Ll ] |

vel

Then we conclude that

sup HAW-]-
vel

< ¢ o2 o + sup | Ly i + e, 040l .+ ’Ué 02-@) |1 4 sup | Ly ¢l

= 7 v, y v, M
b2 AR .y vel ) p JE ¥ )€l oo,e g 00,€ vel "1 00,€e

From the assumption A3, we have maxi<;<y,

,€

Op (nl/ 3). Then the result follows from the point 2 of Lemma 6.

11

2 2 _ 1/3 ) . ) _
950 sz‘oo =Op (n / ) and maxi <j<n ‘mgf,ajdoo,e =



3. If (v,w) € I? and (0,() € Og, are such that [v — w| < 7 and ||§ — ¢|| < n, some basic
computations lead to the inequality

Cn

. 2
. . 9
Av,ij(e)_Aw,ij(O‘ < = [14— 0,05+ |0k, 0% ]
00,€ 00,€
+ —3 |[Sup Lyﬂ'g + ’5jf|ioe -+ sup Lyﬂ'g + ’€j€|ooe .
b vel 00,€ ’ vel 00,€ ’

Then the result follows from assumption A3 and Lemma 6.0]

9 Proofs of assertions (18) and (19) in the proof of Theorem 2

9.1 Proof of assertion (18)

The following notations will be needed. We define

00(0.6) = 7 0) [ Kw) o (Loin(®) - bw)dus

r®(v,0) = ;j / K () 5 (Lo a(6) — bw) du,

F(g)(v 9 vz@( )* bw)d

Note that from Lemma 5, 4., we have

Then assertion (21) will follow if we show that for h = 1,2, 3,

1
2 Z Sup
n
(ir) €T, V1 0€O0n

" (4, ) — rgh)(v,eo)H = op(1). (30)

i

The proof of (30) follows from the following bounds, Assumption A3, Lemma 5 and Lemma 6.

e For h = 1, we have

1 1
sup [0, 6) ~ (0w, 00)|
vel,0e0o n
C 1 1 P
e |t (sup|buie| 0+ Co (suplLul, +1) )|
\/ﬁ 00,€ 00,6 \wel 00,€ vel ’

where C] and Cj are the constants given in Lemma 5 (3).
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e For h = 2, we have

2 2 C . . .
sup HF§ )(%9) - FZ(' )(U»HO)H < — {Sup Lyie| 4 sup|Ly '|0'M;UM’(X,’E:|
vel,0€O) Vi Lver 006 wel 00,
C . .
+ —=sup |Ly | 1+ sup | Lyl . +sup Ly :
n ver 00,€ vel ’ vel 00,€
e Finally we have
sup Hr@(v,e) . r‘F")(v,eo)H < i ol (14 sup| Lyl
vel, 000, I " ! — n 00e vel | oOF
- it Ly, +sup|L 1+ sup | Ly i|
~ u . u . . u . '
\/ﬁ vEI}) Vitloo,e vGII) ot 00,€ vEII) vitloo,e

Using the integrability properties stated in Lemma 6 and assumption A3, assertion (18) given
in the paper follows.

9.1.1 Proof of assertion (19)
We set

f9o (Lv,ié(eo)) :

W _ ~Gulto) @) _ Lull) .
N le( )fgo( vzf(eo))7 Av,i - o0(00)

Using Lemma 5 and Lemma 6, it is easily seen that for h = 1,2, 3,

3 _
f@o( vlf(eo))7 Av,i - oi0(6o)

1
3 > sup [Tyi(6o) — Ayl = 0p(1).

A

To end the proof of assertion (19), it remains to show that for h = 1,2, 3,

sp o | 37 [al) —E (a®)]] = op(1). (31)

v G get,
Note that >73_; (A( )> = hg,(v). To show (31), we first notice that O EHA H < 00

for h =1,2,3. Then, since £ = o(n), it is easily seen that

’

ap| L 3 [Az(}{li)_E<Aq(JZ))}_inZ[AE)’;)_E(AQ(}Z))] = op(1).

n
v )T i=1

Now, we set for v € I and h = 1,2, 3,

/

G0 (1) = ii A% g (a0)].

i=1

13



Then assertion (19) will follow if we show that

up HGQL)(U)H —op(1), h=1,2,3. (32)
ve

We have using the /—dependence,
ol - L v (
E|GP0)| < ZZ r (M)
s=1 :O

Moreover, using the fact that ¢ = o(n) and that sup,, ;> sup,c; Var (Mi(h) (v)) is bounded, we get

(h) oM
Gt (v) = op(1) for each v € I. Now, (32) will follow if we show that sup,_.; w

Op(1). But this is a consequence of the following bounds. First, there exists C' > 0 such that

a0

T 0'%‘0076 lv — '],

] o =)
00,€

For h = 3, we set E; = E [U]EGE;] and Ey = E [mj((g(?))} Then fg,(w) = Ey (fo(w) +wfl(w)) +

Es fl(w). Then, using assumption A5, we have

HAEJQZ - AE)%)ZH <C [dw,%z\o@,e + iléll) Lot

o - a2

C [lv =" + |Luie(00) f£ (Lu,ie(60)) — Luy i0(60) f2 (Lur ie(60)) ]

Clv —'|- [1 + sup [ Ly il o 6] .
vel ’

IN

IN

In the previous bounds, the real number C' does not depends on v,v € I. Then (32) follows and
the proof of assertion (19) is now complete.

10 Checking the regularity assumptions on densities

10.1 Density regularities of ARCH processes

Here, we assume that (X;) is a stationary ARCH process defined by
X; = etoy, Jtz :OLQ+ZOéjX2
Jj=1

We assume here that » 22, a; < oo and that f. is bounded. We set pu(dz) = supy,|<s, fe(z + 2)dx.
We denote by f,2 the probability density of the conditional variance o7 and for v # 0, g,(z) =
i—g fo2 (g—i) which is well defined for z # 0. We also set G(z) = sup,¢; g»(z) and for a compact
interval I which does not contain 0, Gy = {g, : v € I}.

Lemma 7. 1. Assume that aq, a0 > 0. Then fy2 is bounded. Moreover, if Eoy < oo, then for
all v # 0, we have [ g,(z)*u(dz) < oo
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2. Assume that aq, s, a3 > 0. Then there exists a constant C > 0 such that for si,s92 > 0, we
have
Fr(s2) = Foa(s0)| < C (14 VIsil A VEsal) - Vo2 = sil.

3
. . . . S46
3. In addition to the previous point, assume that there exists 6 € (0, %) such that ]Eat2+ < o0

and that x |ac]§+5f5( ) is bounded. Then there exists a real number o > 0 such that
[ G(z)**°u(dx) < co. Moreover there exists some constants ¢,C' > 0 such that

Ny (e,G1,L2(n) < Ce*

Proof of Lemma 7. Before proving the lemma, we first derive an expression for f,» involving
conditional distributions We will use for j > 1 the notation z; = (zj,2j41,...), we set We set
k3(zs) = g + Y525 ;27 and

o0
o+ E ;2.
Jj=1

The measure v will denote the probability distribution of (X;_1, X;_9,...). Moreover, we set

(21, 22|23) = S(;)ff (S(Zzlz)> s(ig)f6 (S(Z;?,))

o= (2 )

If h: R — R is a bounded and measurable function, we have

Eh (07) = / / / h(0n2? + an2d + ks(zs)) r(21, 22]28)dz1 dzodu (z3)
- ///h(ZiJrZ% + k(23)) (21, 22|28)dz1 dzady (z3)
- /000 /_Z/h(/)2 + k3(z3)) 7(p cos(¢), psin(¢)|z3) pdpddy (z3)
N / /;%(ZS - /_ 7; h(s) %f(\/m cos(), /5 — ka(za) sin(6)|z3)dsdodv(zs).

and

Then we deduce that for s > 0,
fo(s / . / /5 = Fa(za) cos(), /5 — k3 (23) sin(¢)|z)dédv(zs). (33)
k3(z3)<s J—m

1. The fact that f,2 is bounded is a consequence of the expression (33), using the fact that f.
and then 7 are bounded. Moreover, we have

’1)2
/gv(w)Qu(de) v? HJ%H<>O/;4fo2 (x2> dz

4 o0
<l /O Vil (y)dy

IN

This bound gives the result.
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2. We use the expression (33). Using some basic computations, it is easily seen that for real
numbers z1, 29,

r(21, 22|23) — 7(21, 22|28)| < O (J21 — 21| + (1 + 21| A |21]) - 22 — 22)

for some constant C' > 0. Setting now for s > k3(z3),

h(s, 6,25) = 7 |V/s = ks(zg) cos(6), /s — ks(zs) sin(@)ls |
we have for s > s1 > k3(z3),

\h(s1,0,23) — h(s2, ¢,23)| < C (14 /51 Asg) - v/]s2 — s1].

We deduce that for s1,s9 > 0,
|f02(82) — f02(81)| S C (1 + M) RV |82 - 81‘ + P(Sl < kg(Xt_g, . ) S 82) .

Moreover, it is easily seen that ks (X;_3,...) has a density gx such that

qr(x) < C (x — k4(Z4))_1/2 dv(z4),
ka(za)<z

where k4(z4) = ao+ 54 ajz}. Then, it can be shown that

]P)(Sl < kg(thg, .. ) < 52) < Cy/ |$2 — 81|.
This proves the second point of this lemma.

3. We first show that under our assumptions,

sup x%+%f02 (x) < o0. (34)
>0

We first observe that

|u]%+5f (u cos ¢, usin ¢|zg)

< C [|ucos¢\%+5 + |usingb|%+5} -7 (u cos ¢, usin ¢|zg)
ar
s ‘Ozo + aju?sin? ¢ + 2]22 ajzj2-+1 wsin ¢
< Csup{y2 fe(y)}- T fe
y>0 s(zz)2t Va25(2z3)
3 1
+ Csup {y5+5fe(y)} - 5(23)7"°
y>0
144
3
< Csup {yiﬁfe(y)} - [sup {y%Mfg(y)} + g + Z a2 + s(z3)z 10
>

y>0 Y §>2
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Then we deduce that the function ¥ defined by

¥(z3) = sup \u| 7 (u cos ¢, usin ¢|zs)
u€ER,pE(—m,m)

3
satisfies E [0 (X¢—3, X¢—4,...)] < co. Using the expression (33), condition Ean < oo and
the decomposition © = = — k3(z3) + k3(z3), we get the bound
212 f2(2)
3 )
< C <E [/gg(Xt_g,Xt_4,...)z 5} +E[ (Xt_g,Xt_4,...)]>
< o0

This shows (34). For simplicity, we now assume that I C (0,00) (the case I C (—00,0) is
identical). First, we show that there exists o > 0 such that [ G(x)*™°u(dz) < co. We have
Since I is compact and oZ(6p) is bounded from below there exists w > 0 such that G(z) =0

when z > w. We choose o such that 2 —I— 5=1- (2+0) We get
= 9 240
2+o
[Towrear < o [T s e (5)] as
0 x x? x?
3 s 240
 ofu )]
y>0
This shows that fo 7)**°dr < oo. Finally, we consider the bracketing numbers of the

family G;. Let n € (0, 1) be such that 8n + (3 —6) (2—2n) < 1. Let vy, vs € I. We have

il (2) -2 (3)
c[etomn e+ o (4) 1o (3)]]
< C[G(z)+G(z)'" (|93|_3’7+:c_ N - o1 — val".

IN

|90 (%) = g0, ()] CG(x)|v1 — o +

IN

Since we have

/ G(x)?Todx < oo, / )2 278 dg < oo,
0

where the second integrability condition follows from the assumption on 7 and (34), the bound
given for N (€,G1,L2(p)) easily follows (see van der Vaart (1998), Example 19.7, for n =1
and p a probability measure, but the arguments are similar in our case). This completes the
proof of the lemma.[]

10.2 A result for ARMA-GARCH processes

Lemma 8. Assume that (1;)j>1 and (aj)j>0 are two summable sequences of real numbers such
that o; > 0 for i >0 and o; > 0 for 0 < i < 3 and there exists an integer ¢ > 1 such that ¢y # 0.
Let (Zi),cy be a stationary process of real random variables such that EZ? < oo and such that
the conditional distribution of Zy|Zy—1, Zs—a, ... has a bounded density. Then the density w of the

couple (Z]Oil Vi Z_j, \/ao + Z?i1 osztQ_j) satisfies w(x,y) < Cy for a positive constant C.

17



Proof of Lemma 8. We set z; = (2;, 2141, ...) and we denote by f (-|z1) the conditional density

of Z; given that Z;_; = z; for ¢ > 1.

We consider two cases.

1. We first assume that ¢ < 3. We set

Z4) = Z@bjzj, k‘Q(Z4) = o+ ZO&jZ?

and r = ||a|| with a = (ﬂ

vai)lgigs'

j=4 j24

We also set

o ] () T () 7 ()

/10

We also denote by R the rotation of R3 such that Re; = a/r where e; = (1,0,0). For
simplicity of notations, we only use one sign ”integral” and do not precise the boundaries
for integration in the next computations. Then if v denotes the probability distribution of

(Zi—4,Z—5,...), we have

o0 o0
Eh (> %iZij. oo+ > a;Z}
j=1 j=1

3

3
= /h > ajzi+ki(za), | > 22+ ka(2za) | ((21)dz1dzodzsdy(zs)

=1

=1

= /h rz1 + ki(za4), Zz + ka(z4) | € (R(21, 22, 23), 24) dz1dzadzodv(z4)

= /h (7"21 + k1(z4), \/Z% +p%+ k2(Z4)> C(R(z1,pcos ¢, psing), za) pdz1dpdedy(z4)

= /h(:v,y)

¢ (R (”““—]f;(z“) \/y2 [P ) cose, %ﬂ - [Pt k2(Z4)sin¢> ,Z4>

%dxdyd¢dy(z4).

Since ¢ is bounded, it is easily

2. We next consider the case g >

and k3(z3) = ag + > 723 ajz]?.

seen that w(z,y) < Cy for a positive constant C.

4. We set

Zz’Z1+1 <2 Z3 H f Z’L‘Zl+1

||::]m

For simplicity of notations, we assume that a3 = ag = 1

(otherwise, as in the previous point, a change of variables is needed in the computations
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11

given below). Denoting by v, the probability distribution of (Z441, Zg42,...), we have

Eh (> 0iZij, J ag+ Y ajzgj)
j=1 i=1

00 q
= /h ijzj, \/Z% + 22 + k3(z3) Hf(zi|zi+1)d21 - dzgdv(zg41)
=1

Jj=q

= /h ijzja V 102 + kg(Zg) Cl(pCOS ¢apSin Qsa Z3)<..2(Z3)

Jj=q

f(zqlzq+1)pdpdpdzs - - - dzgdv(zg41)

= /h > iz | G (\/y2 — k3(z3) cos ¢, \/y? —k‘3(Z3)COS¢»Z3)
J=q

(2(23) f(2q|2q+1)ydyddzs - - - dzydv(zqi1)
T = 2jzqr1 V%

= /h(%y)Cl (\/ y? — k3(2z3) cos ¢, \/y? — k3(z3) cos ¢, 23, . . ., 241, 1/} 7Zq+1>
q

¢ T = g Vi (T =Yg V%
2| %3,---5%¢—1, w yZg+1 f w ‘Zq—i-l
q q

ydrdydedzs - - - dzq—1dv(zq+1)

Then we get

w(z,y) = y/@ (\/ y? — k3(z3) cos ¢, \/y? — k3(z3) cos §, 23, . . ., 241, - Zj;ﬁl Viti ) Zq+1>
q

r—y . Vjz
CQ (,237 ey Zq—]_v ]iq—i_l A ’ Zq+1)
q
(= ;2
f( 7;}%1 : ]!Zq+1> dpdzs - - - dzg-1dv(zq+1)-
q

We deduce that there exists C' > 0 such that w(z,y) < Cy. O

Adequation tests

11.1 Proof of Corollary 2

We first apply Theorem 2.2 in Liu and Wu (2010). The assumptions (C1) and (C4) used in that
paper for the bandwidth and the kernel are automatically satisfied here. We then check (C3)".
Since the noise density f. is positive, the marginal density fx is also positive. The conditional

density of Xy|Xy—1, Xy—o... is given by v — at(lao)fe (U;?EEESO))' Using the condition

sup 1)1 + | 12)] + [ @) < o
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we easily deduce the boundedness of the conditional distribution and its two first derivatives and
then (C3)'. Finally, (C2) is a straightforward consequence of our assumption A2. Indeed, there
exists a measurable function H : RN — R such that X; = H (e4,;_1,...). Moreover, from Assump-
tion A2, we have, setting X;y = H (et, e Bt 15 €y Ep 1 .),

E|X; — Xy|® < Cd,

for a suitable constant C' > 0. The dependence coefficient 0, 5 defined in Liu and Wu (2010), Section
2, can be bounded by

0js <C {ae + a“l} .
Then Assumption (C2)" follow. Applying Theorem 2.2 in Liu and Wu (2010), we deduce that the
convergence given in Corollary 2 holds but with A, replaced by

Zn = \/%Sllp ‘f;‘?(v) _Ef;{:(v)‘ .
v/ fx(v) [ K2()du

But since fy has a bounded second derivative and nb* — 0, we have sup,,c; )Ef;?(v) - fX(v)‘ =

0 (n_l/S). Moreover, from Theorem 1 (2.), we have v/nbsup,¢; ‘fX(v) - fX(v)‘ =Op (n_l/Q). We
then deduce that
By =Dy =0p (Vbtn 1),

Hence the same limit in distribution also holds for A,, which proves the result.[]

11.2 Simulation study

We investigate the performances of our test for a specific example. For homoscedastic data, our
test is very similar to that of Kim et al. (2015) and we prefer to give a numerical comparison for
ARCH processes. In this section, we consider the problem of testing Hy: X follows an ARCH(3).
Under Hp, the dynamic of the process is given by

X, =01+ et\/O.l +0.3(X1 —0.1)* +0.3(Xy 5 —0.1)> +0.3(X;_5 —0.1)%,

and g; follows a standard Gaussian distribution. For this example, we have shown that the as-
sumptions A1-A8 are satisfied for any compact interval I which does not contain 0.1. We choose
Z = [-1,0] U [0.2,1]. Our goal here is to see if our test can detect some departures from the null
hypothesis in particular power ARCH dynamics:

1/6
X, =0.1+¢ (0.1 103Xt — 0.1)° + 0.3 X0 — 0.1]° + 0.3 | X;_5 — 0.1|5> .

Under H;p, we assume that 6 = 1. In the latter case, the volatility is linear w.r.t. absolute past
returns. d = 2 corresponds to the standard ARCH process. Deciding which power of the log returns
has to be included in the volatility has been one of the important question in finance and led Ding
et al. (1993) to consider power ARCH models as alternative to the standard ARCH processes. As
pointed out in Kim et al. (2015), the type of convergence given in our Corollary 2 is quite slow and
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for their statistics, the authors fix the critical values for the test by simulating many times a pivotal
statistics under a particular scenario for which the asymptotic behavior of the same statistics is still
valid. In our conditionally heteroscedastic case, we found that the critical values obtained by this
Monte-Carlo method can be quite sensitive to the simulation setup and we prefer to use the block
bootstrap method discussed in Kunsch (1989). Suppose that a bootstrap sample X7, X3, ..., X}
is available. We then replace the statistics A,, by

A% = Vb sup 0 - fﬁv) ~ ) + Ix()
V) [ K2 w)du

il

*

where f¢" and f)*( are the versions of ff; and fx computed with the bootstrap sample. In the
i.i.d. case and when the density is known under Hy, the asymptotic validity of such bootstrap is
discussed in Bickel and Ren (2001) (see Example 7). We estimate the parameters (location and
ARCH parameters) using weighted least squares. The block bootstrap method requires to fix a
size ¢ for the block which typically satisfies £ — oo and ¢/n — 0. For estimating standard errors,
the optimal rate for £ is n'/3. See for instance Biithlmann and Kiinsch (1999). In our simulation
example, we fix £ = 15 and the number of bootstrap samples is B = 1000 and we use 500 replications
to approximate the true probabilities. Smaller or larger blocs did not give much better results here.
Tables 1 and 2 report the coverage probabilities when b = cn™93. One can see the accuracy of the
results depend of the bandwidth. The optimal value for the constant seems to be ¢ = 1.25. Under
the alternative, we compare the power of our test with that of Kim et al. (2015) which consists in
estimating the density of the data normalized by a preliminary estimation of the volatility. We fix
a = 10% and the critical values for the competitive test are obtained by simulating their statistics
5000 times under the null hypothesis. Then the level of the second test is exactly fixed. Results
are reported in Table 3. One can see that the results are quite sensitive to the bandwidth. For
our best bandwidth for the coverage probabilities (the constant is ¢ = 1.25), we see that the power
of our test is much larger than the optimal power given by the test of Kim et al. (2015). Other
bandwidth parameters did not improve the results. In this conditionally heteroscedastic example,
one can see that working with the original data can be more interesting than first normalizing the
data. However, bandwidth selection seems to be crucial to obtain satisfying results. Note that
bandwidth selection has not been discussed in Kim et al. (2015). Finding results in this direction
is beyond the scope of this paper.

Table 1: Coverage probabilities for the bootstrap approximation (n = 300)

c=05¢c=07|¢c=1|c=125|c=1.5
1-a=090]| 974 97.2 95.6 91.2 81.4
1—-a=0.95| 98.6 99.2 99.2 97 91.6
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Table 2: Coverage probabilities (in %) for the bootstrap approximation (n = 600)

c=05¢c=07|c=1|c=125|c=1.5
1—a=0.90 97 95 93.4 90.8 81.8
1—-a=0.95 99 98 98.2 95.8 91.6

Table 3: Power of the test (in %) for 6 = 1, n = 600 and o = 0.1

c=05|c=07|c=1|c=125|c=1.5
Test based on A,, 6.2 8.6 28.2 70.2 98.4
Test based on =, 20.4 19 10.4 10 10.6
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