FINANCIAL RISK AND UNEMPLOYMENT

Zvi Eckstein, Ofer Setty, David Weiss

Tel Aviv U. and IDC, Tel Aviv U., Tel Aviv U.

July 2015
Volatility in labor market – unemployment u, vacancies v, and market tightness $\theta = \frac{v}{u}$
Introduction

- Volatility in labor market – unemployment u, vacancies v, and market tightness $\theta = \frac{v}{u}$

- Firms experience a large volatility in financial risk:
 - Interest rate (BAA)
 - Spread (BAA-Treasury)
Introduction

- Volatility in labor market – unemployment u, vacancies v, and market tightness $\theta = \frac{v}{u}$

- Firms experience a large volatility in financial risk:
 - Interest rate (BAA)
 - Spread (BAA-Treasury)

- How much labor market volatility can be accounted for by financial shocks?
 - A search-and-matching (DMP) model with capital
 - A simple model goes a long way
Mechanisms DMP

Productivity shock $\downarrow \rightarrow$ surplus/profits $\downarrow \rightarrow v \downarrow \rightarrow u \uparrow$
Mechanisms DMP

Productivity shock $\downarrow \rightarrow$ surplus/profits $\downarrow \rightarrow u \uparrow$

Interest rate rises:

- *Profits*: capital costs $\uparrow \rightarrow$ profits $\downarrow \rightarrow v \downarrow$

- *Vacancy cost*: vacancy cost $\uparrow \rightarrow$ return on vacancies $\downarrow \rightarrow v \downarrow$
Mechanisms DMP

Productivity shock ↓ → surplus/profits ↓ → v ↓ → u ↑

Interest rate rises:

- **Profits**: capital costs ↑ → profits ↓→ v ↓

- **Vacancy cost**: vacancy cost ↑→ return on vacancies ↓ → v↓

Spread rises - related to rising default:

- **Ownership**: claim to future profits ↓ → v ↓
Why Financial Shocks?

<table>
<thead>
<tr>
<th></th>
<th>(u)</th>
<th>(v)</th>
<th>(\theta)</th>
<th>(r)</th>
<th>(Spread)</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Dev</td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Quarterly moments: 1982 – 2012
- All stochastic processes in HP-log deviations

More... Contemporaneous...
Why Financial Shocks?

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>r</th>
<th>Spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Dev</td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
<td>0.14</td>
<td>0.35</td>
</tr>
</tbody>
</table>

- Quarterly moments: 1982 – 2012
- All stochastic processes in HP-log deviations
Why Financial Shocks?

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>r</th>
<th>Spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Dev</td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
<td>0.14</td>
<td>0.35</td>
</tr>
<tr>
<td>Corr with u</td>
<td>2 quarters lags</td>
<td></td>
<td></td>
<td>0.26</td>
<td>0.71</td>
</tr>
</tbody>
</table>

- Quarterly moments: 1982 – 2012
- All stochastic processes in HP-log deviations
Why Financial Shocks?

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>r</th>
<th>Spread</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Dev</td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
<td>0.14</td>
<td>0.35</td>
<td>0.01</td>
</tr>
<tr>
<td>Corr with u</td>
<td>2 quarters lags</td>
<td>0.26</td>
<td>0.71</td>
<td>-0.32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Quarterly moments: 1982 – 2012
- All stochastic processes in HP-log deviations
Figure: US time-series data 1982-2012
Spread and productivity are lagged by 2 quarters
Unemployment, Spread, Productivity

Figure: US time-series data 1982-2012
Spread and productivity are lagged by 2 quarters
Figure: US time-series data 1982-2012
Spread and productivity are lagged by 2 quarters
LITERATURE

- DMP with productivity shocks:
 - Puzzle: Shimer (2005)
 - Solutions: Hall (2005), Hagedorn & Manovskii (2008)....
 - Fundamental surplus: Ljungqvist and Sargent (2014)

- DMP with financial shocks:
 - Petrosky-Nadeau (2014)
 - Boeri, Garibaldi and Moen (2014)

- Financial shocks:
 - Christiano, Eichenbaum and Trabandt (2014)
 - Jermann and Quadrini (2012)....
LITERATURE

- DMP with productivity shocks:
 - Puzzle: Shimer (2005)
 - Solutions: Hall (2005), Hagedorn & Manovskii (2008)...
 - Fundamental surplus: Ljungqvist and Sargent (2014)

- DMP with financial shocks:
 - Petrosky-Nadeau (2014)
 - Boeri, Garibaldi and Moen (2014)
LITERATURE

▶ DMP with productivity shocks:
 ▶ Solutions: Hall (2005), Hagedorn & Manovskii (2008)....
 ▶ Fundamental surplus: Ljungqvist and Sargent (2014)

▶ DMP with financial shocks:
 ▶ Petrosky-Nadeau (2014)
 ▶ Boeri, Garibaldi and Moen (2014)

▶ Financial shocks:
 ▶ Christiano, Eichenbaum and Trabandt (2014)
 ▶ Jermann and Quadrini (2012)
 ▶
Methodology

- Use a search-and-matching (DMP) model with capital

Calibrate Model to US economy- NOT including volatility

Use exogenous financial shocks

A default risk

A financial intermediation cost

Model delivers $\sim 80\%$ of volatility

Interest rate mechanisms important

A large-shock model, not a small-surplus one

$\sim 50\%$ of increase in u during the Great Recession
Methodology

- Use a search-and-matching (DMP) model with capital
- Calibrate Model to US economy- NOT including volatility
- Use exogenous financial shocks
- A default risk
- A financial intermediation cost

- Model delivers $\sim 80\%$ of volatility
- Interest rate mechanisms important

- A large-shock model, not a small-surplus one
- $\sim 50\%$ of increase in u during the Great Recession
Methodology

- Use a search-and-matching (DMP) model with capital
- Calibrate Model to US economy- NOT including volatility
- Use exogenous financial shocks
 - A default risk
 - A financial intermediation cost

Model delivers $\sim 80\%$ of volatility

Interest rate mechanisms important

A large-shock model, not a small-surplus one

$\sim 50\%$ of increase in u during the Great Recession
Methodology

- Use a search-and-matching (DMP) model with capital
- Calibrate Model to US economy- NOT including volatility
- Use exogenous financial shocks
 - A default risk
 - A financial intermediation cost
- Model delivers $\sim 80\%$ of volatility
 - Interest rate mechanisms important
 - A large-shock model, not a small-surplus one
Methodology

- Use a search-and-matching (DMP) model with capital
- Calibrate Model to US economy- NOT including volatility
- Use exogenous financial shocks
 - A default risk
 - A financial intermediation cost
- Model delivers $\sim 80\%$ of volatility
 - Interest rate mechanisms important
 - A large-shock model, not a small-surplus one
- $\sim 50\%$ of increase in u during the Great Recession
Model

Key Features

- Risk-neutral workers, $E_0 \sum_{t=0}^{\infty} \beta^t i_t$
 - Employed: $i_t = w_s + r_f k_s$
 - Unemployed: $i_t = b + r_f k_s$
 - Make consumption/savings choice w.r.t. risk free r_f
Model

Key Features

- Risk-neutral workers, $\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t i_t$
 - Employed: $i_t = \omega_s + r_f k_s$
 - Unemployed: $i_t = b + r_f k_s$
- Make consumption/savings choice w.r.t. risk free r_f

- Banks:
 - Competitive banks borrow from workers, lend to firms
 - Perceive financial intermediation costs & default risk ($\rightarrow r_s$)
MODEL

KEY FEATURES

- Risk-neutral workers, $\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t i_t$
 - Employed: $i_t = w_s + r_f k_s$
 - Unemployed: $i_t = b + r_f k_s$
 - Make consumption/savings choice w.r.t. risk free r_f

- Banks:
 - Competitive banks borrow from workers, lend to firms
 - Perceive financial intermediation costs & default risk ($\rightarrow r_s$)

- Firms:
 - Matched: produce, pay labor & capital costs: $w_s, (r_s + \delta)k$
 - δ is the depreciation rate, r_s is state dependent
 - Unmatched: post vacancies v at a cost $c_s(r_s)$
 - Face state-dependent default
Model

Key Features

- Risk-neutral workers, \(\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t i_t \)
 - Employed: \(i_t = w_s + r_f k_s \)
 - Unemployed: \(i_t = b + r_f k_s \)
 - Make consumption/savings choice w.r.t. risk free \(r_f \)

- Banks:
 - Competitive banks borrow from workers, lend to firms
 - Perceive financial intermediation costs & default risk (\(\rightarrow r_s \))

- Firms:
 - Matched: produce, pay labor & capital costs: \(w_s , (r_s + \delta)k \)
 - \(\delta \) is the depreciation rate, \(r_s \) is state dependent
 - Unmatched: post vacancies \(\nu \) at a cost \(c_s(r_s) \)
 - Face state-dependent default

- Workers and firms match in a frictional labor market
MODEL

KEY FEATURES

- Risk-neutral workers, $E_0 \sum_{t=0}^{\infty} \beta^t i_t$
 - Employed: $i_t = w_s + r_f k_s$
 - Unemployed: $i_t = b + r_f k_s$
 - Make consumption/savings choice w.r.t. risk free r_f

- Banks:
 - Competitive banks borrow from workers, lend to firms
 - Perceive financial intermediation costs & default risk ($\rightarrow r_s$)

- Firms:
 - Matched: produce, pay labor & capital costs: $w_s, (r_s + \delta)k$
 - δ is the depreciation rate, r_s is state dependent
 - Unmatched: post vacancies v at a cost $c_s(r_s)$
 - Face state-dependent default

- Workers and firms match in a frictional labor market

- Wages - Nash Bargaining
Banks

- Borrow from workers at $r_f = \frac{1-\beta}{\beta}$
Banks

- Borrow from workers at $r_f = \frac{1-\beta}{\beta}$
- Face:
 - Default rate d_s (recovery rate ζ)
Banks

- Borrow from workers at $r_f = \frac{1-\beta}{\beta}$
- Face:
 - Default rate d_s (recovery rate ζ)
 - Intermediation costs x_s
Banks

- Borrow from workers at \(r_f = \frac{1-\beta}{\beta} \)
- Face:
 - Default rate \(d_s \) (recovery rate \(\zeta \))
 - Intermediation costs \(x_s \)
- Lend to firms at rate \(r_s \), to maximize per-unit profits:

\[
\pi_b = (1 - d_s)(1 + r_s - x_s) + d_s \zeta (1 + r_s - x_s) - (1 + r_f)
\]
Banks

- Borrow from workers at \(r_f = \frac{1 - \beta}{\beta} \)
- Face:
 - Default rate \(d_s \) (recovery rate \(\zeta \))
 - Intermediation costs \(x_s \)
- Lend to firms at rate \(r_s \), to maximize per-unit profits:
 \[
 \pi_b = (1 - d_s)(1 + r_s - x_s) + d_s \zeta (1 + r_s - x_s) - (1 + r_f)
 \]
- Timing: \(d_s, x_s \) realized; \(r_s \) set by profit maximization
Banks

- Borrow from workers at \(r_f = \frac{1-\beta}{\beta} \)
- Face:
 - Default rate \(d_s \) (recovery rate \(\zeta \))
 - Intermediation costs \(x_s \)
- Lend to firms at rate \(r_s \), to maximize per-unit profits:
 \[
 \pi_b = (1 - d_s)(1 + r_s - x_s) + d_s \zeta(1 + r_s - x_s) - (1 + r_f)
 \]
- Timing: \(d_s, x_s \) realized; \(r_s \) set by profit maximization
- Free entry
Matching

- A C.R.S. matching function $M(u, v)$: new matches

- Define *market tightness* as: $\theta = \frac{v}{u}$
 - Job finding rate for worker: $\frac{M(u,v)}{u} = \lambda^w(\theta)$
 - Job filling rate for firm: $\frac{M(u,v)}{v} = \lambda^f(\theta)$

- Use: $M(u, v) = \frac{uv}{(u^l+v^l)^{\frac{1}{r}}}$ (Ramey, den Haan, and Watson)
Firms and Production

- Matched firms: output p using capital K and labor L

$$Q(L, K) = \min \left(pL, \frac{K}{\phi} \right)$$

- Capital per worker is $k = \frac{K}{\phi p}$

- Allows constant productivity

- Look at business cycle frequencies

- Flow profits per match: $\pi = p - w_s - (r_s + \delta)k$
Firms and workers face state-independent separations $\bar{\sigma}$

In addition firms separate at d, due to default

Separation rate for firms: $\sigma_s^f = \bar{\sigma} + (1 - \bar{\sigma})d$

Separation rate for workers: $\sigma_w^w = \bar{\sigma}$
Value Functions – Workers

Employed worker:

\[W_s = w_s + r_f k + \beta((1 - \sigma^w)E_sW_{s'} + \sigma^w E_sU_{s'}) \]

Unemployed worker:

\[U_s = b + r_f k + \beta(\lambda^w(\theta)E_sW_{s'} + (1 - \lambda^w(\theta)) E_sU_{s'}) \]
Value Functions – Firms

The value of a matched firm is:

\[J_s = p - w_s - (r_s + \delta)k + \beta \left((1 - \sigma^f_s)E_s J_{s'} + \sigma^f_s E_s V_{s'} \right) \]

Vacancy posting firm:

\[V_s = -c_s(r_s) + \beta \left(\lambda^f(\theta)E_s J_{s'} + \left(1 - \lambda^f(\theta) \right)E_s V_{s'} \right), \]

with vacancy cost: \(c_s(r_s) = c_r r_s + c_\delta + c_l \) (conservative!)
Wages – Nash Bargaining

- Wages solve: \(\max_{w_s} (W_s - U_s)^\gamma (J_s - V_s)^{1-\gamma} \)
 - where \(\gamma \) is the worker’s bargaining weight

- The solution is: \(W_s - U_s = \gamma S_s; \quad J_s = (1 - \gamma) S_s \)
 - where \(S_s = (W_s - U_s) + (J_s - V_s) \)

Equilibrium
Calibration

- Time period is a week
- Abstract from default
- Normalize \(p - (\bar{r} + \delta)k = 1 \)
 - Flow surplus is \(1 - b - k \Delta r \), where \(\Delta r \) is deviation from mean
 - Compared with \(1 - b + \Delta p \) in productivity shocks literature
- Exogenous shocks to the financial intermediation cost \(x_s \)
- Set some parameters a priori
- Set some parameters to match data moments
Financial shocks

- Without default the free entry condition for banks becomes:

$$r_s = r_f + x_s$$
FINANCIAL SHOCKS

- Without default the free entry condition for banks becomes:

 \[r_s = r_f + x_s \]

- Reminder: banks

- Guess & verify a weekly AR(1) process that matches quarterly data on \(r_s \)

<table>
<thead>
<tr>
<th>Moment</th>
<th>Parameter</th>
<th>Model</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>Weekly</td>
<td>Quarterly</td>
<td>Quarterly</td>
</tr>
<tr>
<td>Persistence</td>
<td>0.995</td>
<td>0.798</td>
<td>0.799</td>
</tr>
<tr>
<td>St. Dev.</td>
<td>0.04</td>
<td>0.14</td>
<td>0.14</td>
</tr>
</tbody>
</table>
A-Priori Parameter Values

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Value</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma)</td>
<td>Job separation</td>
<td>0.0081</td>
<td>CPS-Shimer (2005)</td>
</tr>
<tr>
<td>(\beta)</td>
<td>Discount rate</td>
<td>0.99(\frac{1}{12})</td>
<td>4% annual</td>
</tr>
<tr>
<td>(c)</td>
<td>Vacancy Costs</td>
<td>0.584</td>
<td>(K & w) – HM (2008)</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Worker Bargaining Weight</td>
<td>0.50</td>
<td>Literature</td>
</tr>
<tr>
<td>(\delta)</td>
<td>Depreciation Rate</td>
<td>0.0012</td>
<td>6% annual (NIPA)</td>
</tr>
</tbody>
</table>

▶ Calibration of vacancy cost
Calibration – Matching Moments

Parameter values and identification:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
<th>Value</th>
<th>Jointly Identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Flow utility when u</td>
<td>0.60</td>
<td>Job finding rate</td>
</tr>
<tr>
<td>l</td>
<td>Matching elasticity</td>
<td>0.41</td>
<td>Market Tightness</td>
</tr>
</tbody>
</table>

Model fit:

<table>
<thead>
<tr>
<th>Moment</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Finding Rate</td>
<td>0.139</td>
<td>0.139</td>
</tr>
<tr>
<td>Market Tightness</td>
<td>0.634</td>
<td>0.634</td>
</tr>
</tbody>
</table>
Results – Data versus Model

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Dev</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
<td>0.14</td>
</tr>
<tr>
<td>Model</td>
<td>0.09</td>
<td>0.11</td>
<td>0.19</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Table: Quarterly moments: data: 1982–2012 versus Model

In correlations with the r, the interest rate is lagged by two quarters. This is with Results without lag.
Results – Data versus Model

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Dev</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
<td>0.14</td>
</tr>
<tr>
<td>Model</td>
<td>0.09</td>
<td>0.11</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>Persistence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>0.94</td>
<td>0.91</td>
<td>0.93</td>
<td>0.80</td>
</tr>
<tr>
<td>Model</td>
<td>0.86</td>
<td>0.61</td>
<td>0.78</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Table: Quarterly moments: data: 1982-2012 versus Model.
In correlations with the interest rate, the interest rate is lagged by two quarters.
Results – Data versus Model

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Dev</td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
<td>0.14</td>
</tr>
<tr>
<td>Data</td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
<td>0.14</td>
</tr>
<tr>
<td>Model</td>
<td>0.09</td>
<td>0.11</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>Persistence</td>
<td>0.94</td>
<td>0.91</td>
<td>0.93</td>
<td>0.80</td>
</tr>
<tr>
<td>Data</td>
<td>0.94</td>
<td>0.91</td>
<td>0.93</td>
<td>0.80</td>
</tr>
<tr>
<td>Model</td>
<td>0.86</td>
<td>0.61</td>
<td>0.78</td>
<td>0.80</td>
</tr>
<tr>
<td>Corr u</td>
<td>1</td>
<td>-0.89</td>
<td>-0.97</td>
<td>0.26</td>
</tr>
<tr>
<td>Data</td>
<td>1</td>
<td>-0.89</td>
<td>-0.97</td>
<td>0.26</td>
</tr>
<tr>
<td>Model</td>
<td>1</td>
<td>-0.71</td>
<td>-0.91</td>
<td>0.64</td>
</tr>
<tr>
<td>Corr v</td>
<td>-</td>
<td>1</td>
<td>0.97</td>
<td>-0.23</td>
</tr>
<tr>
<td>Data</td>
<td>-</td>
<td>1</td>
<td>0.97</td>
<td>-0.23</td>
</tr>
<tr>
<td>Model</td>
<td>-</td>
<td>1</td>
<td>0.94</td>
<td>-0.26</td>
</tr>
<tr>
<td>Corr θ</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-0.25</td>
</tr>
<tr>
<td>Data</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-0.25</td>
</tr>
<tr>
<td>Model</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-0.44</td>
</tr>
</tbody>
</table>

Table: Quarterly moments: data: 1982-2012 versus Model

In correlations with the r, the interest rate is lagged by two quarters.

This is with. To Results without lag
Breakdown of Mechanisms

Interest rate rises:

- *Profits*: capital costs $\uparrow \rightarrow$ profits $\downarrow \rightarrow v \downarrow$

- *Vacancy cost*: vacancy cost $\uparrow \rightarrow$ return on vacancies $\downarrow \rightarrow v \downarrow$
Breakdown of Mechanisms

Interest rate rises:

- **Profits**: capital costs $\uparrow \rightarrow$ profits $\downarrow \rightarrow v \downarrow$

- **Vacancy cost**: vacancy cost $\uparrow \rightarrow$ return on vacancies $\downarrow \rightarrow v \downarrow$

<table>
<thead>
<tr>
<th>Mechanisms</th>
<th>u</th>
<th>v</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
</tr>
<tr>
<td>Both mechanisms</td>
<td>0.09</td>
<td>0.11</td>
<td>0.19</td>
</tr>
</tbody>
</table>
Breakdown of Mechanisms

Interest rate rises:

- **Profits:** capital costs $\uparrow \rightarrow$ profits $\downarrow \rightarrow v \downarrow$

- **Vacancy cost:** vacancy cost $\uparrow \rightarrow$ return on vacancies $\downarrow \rightarrow v \downarrow$

<table>
<thead>
<tr>
<th>Mechanisms</th>
<th>u</th>
<th>v</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
</tr>
<tr>
<td>Both mechanisms</td>
<td>0.09</td>
<td>0.11</td>
<td>0.19</td>
</tr>
<tr>
<td>Profit</td>
<td>0.06</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>Vacancy cost</td>
<td>0.03</td>
<td>0.04</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Table: Breakdown- Just Standard Deviation
A small surplus or a large shock?

- The elasticity of market tightness (θ) w.r.t. the shock:

In Shimer (2005):
$$\frac{\partial \log \theta}{\partial \log p} = 1.67.$$

In our model:
$$\frac{\partial \log \theta}{\partial \log r_k} = 0.83 \text{ (only the profit channel)}.$$

But...

$$\sigma_p = 0.01.$$

$$\sigma_r = 0.14.$$

...our model produces $0.83 \times 0.67 \times 0.14 = 7$ times more volatility.
A small surplus or a large shock?

- The elasticity of market tightness (θ) w.r.t. the shock:
 - In Shimer (2005): $\frac{\partial \log \theta}{\partial \log p} = 1.67$
 - In our model: $\frac{\partial \log \theta}{\partial \log r_k} = 0.83$ (only the profit channel)
 - $\sigma_p = 0.01$
 - $\sigma_r = 0.14$
 - ...our model produces $0.83 \times 0.01 = 7$ times more volatility
A small surplus or a large shock?

- The elasticity of market tightness (θ) w.r.t. the shock:
 - In Shimer (2005): $\frac{\partial \log \theta}{\partial \log p} = 1.67$
 - In our model: $\frac{\partial \log \theta}{\partial \log r_k} = 0.83$ (only the profit channel)

...our model produces more volatility:

- $\sigma_p = 0.01$
- $\sigma_r = 0.14$
- $\sigma = 0.831670.01 = 7$ times more volatility
A SMALL SURPLUS OR A LARGE SHOCK?

- The elasticity of market tightness (θ) w.r.t. the shock:
 - In Shimer (2005): $\frac{\partial \log \theta}{\partial \log p} = 1.67$
 - In our model: $\frac{\partial \log \theta}{\partial \log r_k} = 0.83$ (only the profit channel)
- But...
A small surplus or a large shock?

- The elasticity of market tightness (θ) w.r.t. the shock:
 - In Shimer (2005): $\frac{\partial \log \theta}{\partial \log p} = 1.67$
 - In our model: $\frac{\partial \log \theta}{\partial \log rk} = 0.83 \text{ (only the profit channel)}$

- But...

 - $\sigma_p = 0.01$
 - $\sigma_r = 0.14$
A small surplus or a large shock?

The elasticity of market tightness (θ) w.r.t. the shock:

- In Shimer (2005): $\frac{\partial \log \theta}{\partial \log p} = 1.67$
- In our model: $\frac{\partial \log \theta}{\partial \log r_k} = 0.83$ (only the profit channel)

But...

- $\sigma_p = 0.01$
- $\sigma_r = 0.14$

...our model produces $\frac{0.83}{1.67} \frac{0.14}{0.01} = 7$ times more volatility
Robustness

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Robustness</th>
<th>Why</th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
<td>0.14</td>
</tr>
<tr>
<td>Benchmark</td>
<td></td>
<td></td>
<td>0.09</td>
<td>0.11</td>
<td>0.19</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Robustness

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Robustness</th>
<th>Why</th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
<td>0.14</td>
</tr>
<tr>
<td>Benchmark</td>
<td></td>
<td></td>
<td>0.09</td>
<td>0.11</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>\downarrow b</td>
<td>b=0.40</td>
<td>Shimer</td>
<td>0.06</td>
<td>0.07</td>
<td>0.13</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Robustness

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Robustness</th>
<th>Why</th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
<td>0.14</td>
</tr>
<tr>
<td>Benchmark</td>
<td></td>
<td></td>
<td>0.09</td>
<td>0.11</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>↓ b</td>
<td>b=0.40</td>
<td>Shimer</td>
<td>0.06</td>
<td>0.07</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>↑ b</td>
<td>b=0.71</td>
<td>Hall Milgrom</td>
<td>0.13</td>
<td>0.20</td>
<td>0.29</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Robustness

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Robustness</th>
<th>Why</th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
<td>0.14</td>
</tr>
<tr>
<td>Benchmark</td>
<td></td>
<td></td>
<td>0.09</td>
<td>0.11</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>$\downarrow b$</td>
<td>b=0.40</td>
<td>Shimer</td>
<td>0.06</td>
<td>0.07</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>$\uparrow b$</td>
<td>b=0.71</td>
<td>Hall Milgrom</td>
<td>0.13</td>
<td>0.20</td>
<td>0.29</td>
<td>0.14</td>
</tr>
<tr>
<td>$\uparrow \delta$</td>
<td>$\delta=0.08$</td>
<td>Robust</td>
<td>0.08</td>
<td>0.09</td>
<td>0.15</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Robustness

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Robustness</th>
<th>Why</th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
<td>0.14</td>
</tr>
<tr>
<td>Benchmark</td>
<td></td>
<td></td>
<td>0.09</td>
<td>0.11</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>↓ b</td>
<td>$b=0.40$</td>
<td>Shimer</td>
<td>0.06</td>
<td>0.07</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>↑ b</td>
<td>$b=0.71$</td>
<td>Hall Milgrom</td>
<td>0.13</td>
<td>0.20</td>
<td>0.29</td>
<td>0.14</td>
</tr>
<tr>
<td>↑ δ</td>
<td>$\delta=0.08$</td>
<td>Robust</td>
<td>0.08</td>
<td>0.09</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>↑ γ</td>
<td>$\gamma=0.72$</td>
<td>Shimer</td>
<td>0.10</td>
<td>0.13</td>
<td>0.20</td>
<td>0.14</td>
</tr>
<tr>
<td>↓ γ</td>
<td>$\gamma=0.28$</td>
<td>- Shimer</td>
<td>0.08</td>
<td>0.10</td>
<td>0.18</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Robustness

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Robustness</th>
<th>Why</th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td>0.11 0.12 0.22 0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benchmark</td>
<td></td>
<td>0.09 0.11 0.19 0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓ b</td>
<td>b=0.40</td>
<td>Shimer</td>
<td>0.06 0.07 0.13 0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑ b</td>
<td>b=0.71</td>
<td>Hall Milgrom</td>
<td>0.13 0.20 0.29 0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑ δ</td>
<td>δ=0.08</td>
<td>Robust</td>
<td>0.08 0.09 0.15 0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑ γ</td>
<td>γ=0.72</td>
<td>Shimer</td>
<td>0.10 0.13 0.20 0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>↓ γ</td>
<td>γ=0.28</td>
<td>- Shimer</td>
<td>0.08 0.10 0.18 0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levels</td>
<td>No Log</td>
<td>Gali</td>
<td>0.08 0.10 0.17 0.9 p.p</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Robustness – Cobb Douglas

Now suppose:

- Cobb-Douglas: \(y(k) = Ak^\alpha: \alpha = 1/3 \)
- Solution: \(k = \left(\frac{\alpha A}{r+\delta} \right)^{\frac{1}{1-\alpha}} \)
- Flow Surplus: \(y(k) - b - rk \)
Robustness – Cobb Douglas

Now suppose:

> Cobb-Douglas: \(y(k) = Ak^\alpha \): \(\alpha = 1/3 \)

> Solution: \(k = \left(\frac{\alpha A}{r+\delta} \right)^{\frac{1}{1-\alpha}} \)

> Flow Surplus: \(y(k) - b - rk \)

<table>
<thead>
<tr>
<th>Robustness</th>
<th>u</th>
<th>v</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
</tr>
<tr>
<td>Benchmark</td>
<td>0.09</td>
<td>0.11</td>
<td>0.19</td>
</tr>
<tr>
<td>Cobb Douglas</td>
<td>0.18</td>
<td>0.23</td>
<td>0.37</td>
</tr>
</tbody>
</table>
Robustness – Cobb Douglas

Now suppose:

- Cobb-Douglas: $y(k) = A k^\alpha$: $\alpha = 1/3$
- Solution: $k = \left(\frac{\alpha A}{r + \delta} \right)^{\frac{1}{1-\alpha}}$
- Flow Surplus: $y(k) - b - rk$

<table>
<thead>
<tr>
<th>Robustness</th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
<td>0.01</td>
</tr>
<tr>
<td>Benchmark</td>
<td>0.09</td>
<td>0.11</td>
<td>0.19</td>
<td>0.00</td>
</tr>
<tr>
<td>Cobb Douglas</td>
<td>0.18</td>
<td>0.23</td>
<td>0.37</td>
<td>0.05</td>
</tr>
</tbody>
</table>
What About the Great Recession?

![Graph showing the percent of a given year]

- **Percent**: 4, 6, 8, 10, 12, 14, 16
Simulate the *benchmark* model for 2008Q2-2012Q4
What About the Great Recession?

- Simulate the benchmark model for 2008Q2-2012Q4
- Simulate a counterfactual if the Fed had not intervened:

\[r_c = r_t + (f_{2008Q2} - f_t) \]
CONCLUSION

We studied:

- Mechanisms for *financial risk* affecting unemployment
- The quantitative effect of those shocks using DMP literature
Conclusion

We studied:

▶ Mechanisms for *financial risk* affecting unemployment
▶ The quantitative effect of those shocks using DMP literature

We found:

▶ Financial conditions matter a lot
▶ The main driving force is the interest rate
Calibration of vacancy cost

- Vacancy cost is $c_s(r_s) = c_r r_s + c_\delta + c_l$

- Capital component: $c_r r_s + c_\delta$
 - Assume capital required one period in advance
 - Capital share = $\frac{1}{3}$
 - Labor productivity is 1 → capital cost ~ 0.5
 - Correct for capital in vacancies: $c_r r_s + c_\delta = 0.474$

- Labor component: c_l
 - 11% of average labor productivity based on micro evidence

- Total vacancy cost = $0.474 + 0.11 = 0.584$
Hires from JOLTS, Inv. is real gross private domestic
Correlation = 0.73
St dev of log is 0.11 for investment, 0.10 for hires
UNEMPLOYMENT, INTEREST, PRODUCTIVITY

Figure: US time-series data 1982-2012

Interest rate and productivity are lagged by 2 quarters
Unemployment, Interest rate and Spread

Figure: US time-series data 1982-2012
No lag

Spread HP filtered
EQUILIBRIUM

Given free entry for banks \(r = f(x, d|r_f, \zeta) \), solve \(S_s, \theta_s \) using:

- Free entry condition \((V = 0) \):
 \[
 \frac{c_s}{\lambda f(\theta)} = \beta(1 - \gamma)E_sS'_s(= \beta E_s J'_s)
 \]

- Evolution of surplus:
 \[
 S_s = p - b - (r_s + \delta)k + \beta \left\{ \left(1 - \sigma_s^f\right)E_sS'_s - \frac{(\theta q(\theta) - (1 - \bar{\sigma})d)\gamma c_s}{(1 - \gamma) q(\theta)} \right\}
 \]

The aggregate resource constraint is \(C + I = Y \), where:

\[
Y = (1 - u)p
\]
\[
I = vc_s + (1 - \sigma^w)(\delta + x + d(1 - \zeta))(1 - u)k.
\]
Abstracting from Default

- Default is a shock to ownership (continuation value)
- How big is it?
 - Separation rate is on average 2% a month (Shimer, 2005)
 - Default rate is on average 1% a year (Elton, 2001)
- Formalize that this is small using Ljungqvist and Sargent (2014) *Fundamental Surplus* approach
Results - Data versus Model

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Dev</td>
<td>Data</td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>Model</td>
<td>0.09</td>
<td>0.11</td>
<td>0.19</td>
</tr>
<tr>
<td>Persistence</td>
<td>Data</td>
<td>0.94</td>
<td>0.91</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>Model</td>
<td>0.86</td>
<td>0.61</td>
<td>0.78</td>
</tr>
<tr>
<td>Corr u</td>
<td>Data</td>
<td>1</td>
<td>-0.89</td>
<td>-0.97</td>
</tr>
<tr>
<td></td>
<td>Model</td>
<td>1</td>
<td>-0.71</td>
<td>-0.91</td>
</tr>
<tr>
<td>Corr v</td>
<td>Data</td>
<td>-</td>
<td>1</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>Model</td>
<td>-</td>
<td>1</td>
<td>0.94</td>
</tr>
<tr>
<td>Corr θ</td>
<td>Data</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Model</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Table: Quarterly moments: data: 1982-2012 versus Model

In correlations with the r, the interest rate is contemporaneous.
Interest Rate vs. Productivity Shocks

Comparison by looking at only data:

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Dev</td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
<td>0.14</td>
<td>0.01</td>
</tr>
<tr>
<td>Persistence</td>
<td>0.94</td>
<td>0.91</td>
<td>0.93</td>
<td>0.80</td>
<td>0.77</td>
</tr>
<tr>
<td>Corr u</td>
<td>1</td>
<td>-0.89</td>
<td>-0.97</td>
<td>0.26</td>
<td>-0.32</td>
</tr>
<tr>
<td>Corr v</td>
<td>-</td>
<td>1</td>
<td>0.97</td>
<td>-0.23</td>
<td>0.48</td>
</tr>
<tr>
<td>Corr θ</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-0.25</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Table: Quarterly moments: data: 1982-2012
Correlations: r or p are lagged by two quarters

Note: exact value for σ_p is 0.0095.
Comparison by looking at only data:

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Dev</td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
<td>0.14</td>
<td>0.01</td>
</tr>
<tr>
<td>Persistence</td>
<td>0.94</td>
<td>0.91</td>
<td>0.93</td>
<td>0.80</td>
<td>0.77</td>
</tr>
<tr>
<td>Corr u</td>
<td>1</td>
<td>-0.89</td>
<td>-0.97</td>
<td>0.32</td>
<td>0.05</td>
</tr>
<tr>
<td>Corr v</td>
<td>-</td>
<td>1</td>
<td>0.97</td>
<td>-0.26</td>
<td>0.17</td>
</tr>
<tr>
<td>Corr θ</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-0.30</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Table: Quarterly moments: data: 1982-2012 Contemporaneous correlations

Note: exact value for σ_p is 0.0095.
Why Financial Shocks?

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>v</th>
<th>θ</th>
<th>r</th>
<th>Spread</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Dev</td>
<td>0.11</td>
<td>0.12</td>
<td>0.22</td>
<td>0.14</td>
<td>0.35</td>
<td>0.01</td>
</tr>
<tr>
<td>Corr with u</td>
<td></td>
<td></td>
<td></td>
<td>0.26</td>
<td>0.71</td>
<td>-0.32</td>
</tr>
<tr>
<td></td>
<td>2 quarters lags</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.32</td>
<td>0.62</td>
<td>0.05</td>
</tr>
</tbody>
</table>

- Quarterly moments: 1982 – 2012
- All stochastic processes in HP-log deviations
Elasticity of tightness w.r.t. the shock

Example: profits channel

- A continuous time model w/ only profits mechanism \((r_s k)\)

\[
\frac{\partial \log \theta}{\partial \log p} = \frac{p}{p - b} \quad * \Upsilon \quad \text{productivity shocks}
\]

fundamental surplus

\[
\frac{\partial \log \theta}{\partial \log rk} = \frac{-\bar{r}k}{p - \bar{r}k - \delta k - b} \quad * \Upsilon \quad \text{interest – rate shocks}
\]

fundamental surplus

- \(\Upsilon = \frac{(r+\sigma)+\gamma \theta q(\theta)}{\alpha(r+\sigma)+\gamma \theta q(\theta)}\) where \(\alpha\) is the elasticity of matching w.r.t. \(u\)
Elasticity of tightness w.r.t. the shock

Example: profits channel

- A continuous time model w/ only profits mechanism \((r_s k)\)

\[
\frac{\partial \log \theta}{\partial \log p} = \frac{p}{p-b} \ast \Upsilon \quad \text{productivity shocks}
\]

\[
\text{fundamental surplus}
\]

\[
\frac{\partial \log \theta}{\partial \log rk} = \frac{-\bar{r}k}{p - \bar{r}k - \delta k - b} \ast \Upsilon \quad \text{interest-rate shocks}
\]

\[
\text{fundamental surplus}
\]

\[
\Upsilon = \frac{(r+\sigma)+\gamma\theta q(\theta)}{\alpha(r+\sigma)+\gamma\theta q(\theta)} \quad \text{where } \alpha \text{ is the elasticity of matching w.r.t. } u
\]

- In Shimer-based calibration: \(\frac{p}{p-z} = 1.67, \frac{\bar{r}k}{p-\bar{r}k-\delta k-z} = 0.83\)

- Conclusion: elasticity is about 2 times smaller in our model, But:

- \((r,\text{spread})\) are \(\sim 14\) times more volatile than labor productivity

\[
\frac{\partial \log \theta}{\partial \log rk} \ast \sigma_r = 0.12
\]
Banks

- Borrow from workers at \(r_f = \frac{1-\beta}{\beta} \)
- Face:
 - Default rate \(d_s \) (recovery rate \(\zeta \))
 - Intermediation costs \(x_s \)
- Lend to firms at rate \(r_s \), to maximize per-unit profits:

\[
\pi_b = (1 - d_s)(1 + r_s - x_s) + d_s \zeta(1 + r_s - x_s) - (1 + r_f)
\]
- Timing: \(d_s, x_s \) realized; \(r_s \) set by profit maximization
- Free entry